Сборники статей


 Реферат RUS  Реферат ENG  Литература  Полный текст

Стандартные методы офтальмологического обследования


1----------

     Диагноз врожденной глаукомы выставляют на основании анамнестических данных и результатов клинического обследования, которое включает набор стандартных и высокоинформативных дополнительных методов исследования.

    У детей с манифестацией глаукомы в раннем возрасте с развитием клинической картины классического гидрофтальма, диагностика глаукомы не представляет особых сложностей. При более поздней манифестации она может представлять трудности из-за отсутствия или слабой выраженности характерной симптоматики, а также растянутого во времени развития патологического процесса.

    Ранняя диагностика направлена на выявление признаков растяжения глаза, вызванного подъемом ВГД, начальных проявлений атрофических процессов в диске зрительного нерва, слое нервных волокон сетчатки. Постановка раннего диагноза врожденной глаукомы должна базироваться на комплексном анализе данных с учетом асимметричного характера клинических и морфофункциональных характеристик парных глаз.

    Стандартные методы обследования

    Анамнез

    Все дети должны быть обследованы педиатром, при необходимости невропатологом, кардиологом, генетиком и другими специалистами на предмет наличия соматической патологии. Выяснение сведений о раннем постнатальном периоде - частоте и тяжести перенесенных инфекционных заболеваний, хронической патологии, аллергических реакций. Выявление наличия возможных причин и предрасполагающих факторов возникновения заболевания (внутриутробные инфекции, алиментарные факторы и др.) путем ознакомления с состоянием здоровья матерей, сведений акушерско-гинекологического анамнеза.

    Важным аспектом расспроса родителей является целенаправленный анализ времени появления признаков глаукомы, их взаимозависимости, а также выраженности на парных глазах.

    Жалобы (См выше)

    Рефрактометрия

    Как известно, у детей с врожденной глаукомой, по мере растяжения глаза, формируется миопическая рефракция, у трети – миопия высокой степени. При дальнейшем прогрессировании глаукомы и значительном и, зачастую, неравномерном растяжении оболочек глаза, увеличивается степень астигматизма, в значительной степени снижающего остроту зрения и так достаточно низкую у таких детей.

    Соответственно, исследование клинической рефракции у детей с врожденной глаукомой или подозрением на это заболевание преследует две цели: диагностики глаукомного процесса и оценки темпов его прогрессирования – с одной стороны и своевременной оптической коррекции аметропии – с другой.

    В настоящее время эталонным методом рефрактометрии у детей раннего возраста продолжает оставаться скиаскопия. Вместе с тем, ее успешно дополняют и приборные методы, в том числе осуществляемые с помощью портативных рефрактометров. Неоспоримыми преимуществами последних служат возможность проведения исследования в любых условиях, в том числе в наркозе, а также возможность точного определения меридиана астигматизма.

    Периметрия

    Исследование периферического зрения чрезвычайно важно для диагностики и оценки стадии и динамики течения глаукомного процесса. Безусловно, периметрия осуществима лишь детям старшего возраста, с достаточным уровнем психомоторного развития. При этом значение имеет исследование поля зрения как с помощью движущихся (кинетическая периметрия),так и неподвижных стимулов (статическая периметрия).

    Кинетическая периметрия

    Имеет значение в диагностике стадии глаукомы (однако, только при первичной глаукоме взрослых, т.к. в современных классификациях врожденной глаукомы количественные периметрические критерии отсутствуют) и оценке динамики глаукомного процесса (у взрослых и детей). Оценке подлежат положение периферических границ поля зрения, наличие абсолютных и относительных скотом, границы слепого пятна.

    Метод кинетической периметрии уже доказал свою эффективность в мониторинге больных с развитой и далекозашедшей стадиями глаукомы. Вместе с тем, в целях раннего выявления глаукомы рассматриваемый метод уступает статической периметрии.

    Статическая периметрия.

    Метод количественной статической периметрии заключается в определении световой чувствительности в различных участках поля зрения с помощью неподвижных объектов переменной яркости. Современные компьютеризированные приборы (Humphrey, Octopus и др.) обеспечивают выполнение исследования в полуавтоматическом режиме (т.н.компьютерная или статическая автоматическая периметрия: САП).

    Метод позволяет обнаружить даже минимальные дефекты как центрального, так и периферического поля зрения, существенно повышая эффективность мониторинга начальной и развитой врожденной глаукомы у детей подросткового возраста, а также ранней диагностики глаукомы, при ее развитии у старших детей.

    Повторные исследования целесообразно проводить 2 раза в год, а при впервые выявленной глаукоме (или подборе терапии или после хирургического лечения) рекомендуется проведение исследований в течение первых двух лет наблюдений через 2-3 мес.

    Биомикроскопия глаза

    Конъюнктива

    При подозрении на врожденную глаукому, в начальной и развитой ее стадиях с компенсированным и субкомпенсированным ВГД состояние конъюнктивы чаще всего не изменено. При далекозашедшей стадии или при стойком повышении офтальмотонуса возможно наличие застойной или смешанной инъекции глазного яблока.

    При глаукоме, сочетанной с факоматозами (синдром Стерджа-Вебера) характерно наличие новообразованных сосудов в виде сосудистой сети, различной степени выраженности.

    При наличии фильтрационных подушек (после хирургических вмешательств) необходимо обращать внимание на их ширину, высоту, толщину стенки, степень васкуляризации и кистозные изменения.

    Роговица

    При начальной стадии при минимальном растяжении роговицы наблюдается легкий ее отек в виде опалесценции. Примечательно, что он легко может быть купирован инстилляциями в конъюнктивальную полость гиперосмолярных жидкостей: р-р глюкозы 40%, р-р натрия хлорида 10%, глицерина и др., что позволяет его дифференцировать с физиологической опалесценцией роговицы, часто наблюдаемой у новорожденных. В последнем случае опалесценция не исчезает.

    При дальнейшем прогрессировании глаукомы увеличивается диаметр роговицы, что вызывает образование на эндотелии и десцеметовой мембране разрывов и трещин в виде единичных, а затем и множественных полосчатых помутнений. За счет нарушения барьерной функции в строму роговицы проникает внутриглазная жидкость, нарушаются метаболические процессы, что вызывает отек, а затем и помутнение роговицы. Также происходит увеличение (растяжение) лимба, преимущественно верхнего, а в дальнейшем, при далекозашедшей стадии – во всех отделах (до 5-6мм).

    При развитии глаукомы у детей с аномалиями развития переднего отрезка глаза (II форма-аномалия Петерса) помутнения роговицы различной степени выраженности (чаще стромальные) выявляются уже с рождения. При развитии глаукомы у таких детей, подъем ВГД может вызывать ухудшение состояния роговицы: присоединение явлений отека или повышение интенсивности помутнения.

    Передняя камера

    В норме в области зрачка глубина передней камеры составляет 2,75–3,5 мм. У детей с начальной стадией врожденной глаукомы передняя камера нормальной глубины или слегка глубже, чем в норме. По мере растяжения глазного яблока у таких детей передняя камера продолжает углубляться и может достигать 5-6мм. Необходимо также проводить сравнительную оценку глубины камеры на обоих глазах. Асимметрия этого показателя является важным диагностическим признаком рассматриваемого заболевания.

    Радужка

    В начальной стадии зрачковые реакции чаще сохранены. По мере растяжения глаза при гидрофтальме нарастают атрофические изменения радужки: сглаживается рисунок, развивается атрофия зрачковой каймы, крипты становятся менее выражены, визуализируются сосуды глубокой сети (необходимо дифференцировать с неоваскуляризацией), появляется мидриаз, снижается реакция на свет. При аномалии Аксенфельда-Ригера, синдроме Франка-Каменецкого имеются характерные изменения радужки (рассмотрены выше), которые, как правило, предшествуют манифестации глаукомы и могут прогрессировать во времени: появляются трансиллюминационные дефекты, секторальная атрофия, возможны изменения формы зрачка и др. Следует обращать внимание на присутствие послеоперационных изменений радужки: наличие базальной колобомы, следов лазерной иридэктомии и др.

    Хрусталик

    Наряду с прозрачностью, размерами и формой отмечают скопления пигмента, факодонез, сублюксацию или иную дислокацию хрусталика.

    Гониоскопическим исследованиям придается большое значение: методика позволяет исследовать угол передней камеры (УПК), выявить уровень ретенции внутриглазной жидкости, степень дисгенеза и определить патогенетически ориентированную тактику лечения.

    Различают следующие опознавательные зоны УПК:

    1. Переднее пограничное кольцо Швальбе - циркулярное кольцо является местом окончания десцеметовой оболочки и соответствует области лимба; от расположенной рядом ткани роговицы отличается своей более белой окраской и меньшей степенью прозрачности.

    2. Вырезка - узкая борозда, которая является границей между передним пограничным кольцом Швальбе и следующей зоной корнесклеральных трабекул.

    3. Корнеосклеральная трабекула – просвечивающая треугольная призматическая полоска меняющейся окраски, большей частью бледно-серая, желтоватая до белой.

    4. Шлеммов канал (ШК) (склеральный синус) представляется в виде серой тени, лежащей примерно в середине трабекулы, и больше выделяется при узкой щели. При просачивании в ШК крови он отсвечивает красным цветом. Данное явление возможно при повышении давления в эписклеральных венах выше уровня офтальмотонуса, чаще – при компрессии эписклеральных вен гаптической частью гониоскопа. Наблюдается также при гипотонии глаза и при патологическом повышении давления в эписклеральных венах (синдром Стерджа–Вебера).

    5. Склеральная шпора или заднее пограничное кольцо Швальбе имеет вид полосы ярко-белого цвета, служит местом прикрепления к склере цилиарного тела и ограничивает шлеммов канал сзади; название склеральной шпоры указанная зона получила вследствие того, что на гистологических срезах склера в этой области действительно имеет вид треугольника, напоминающего по форме шпору.

    6. Полоска (лента) цилиарного тела – серо-коричневого цвета, слегка блестит. 7. Периферия корня радужки. У корня радужки образуются две или три циркулярно расположенные складки. Последняя складка (борозда Фукса) является периферической частью корня радужки. Обычно циркулярные складки более или менее выражены, иногда могут и отсутствовать. В нормальных условиях периферия корня радужки занимает различное положение в отношении корнеосклеральной стенки: она может располагаться непосредственно и напротив шпоры, и напротив ШК, и напротив переднего пограничного кольца Швальбе.

    Для врожденной глаукомы характерно аномальное развитие или недоразвитие всех структур дренажной зоны УПК. Характерными являются:

    1) Наличие эмбриональной нерассосавшейся мезодермальной ткани (встречается наиболее часто: по данным отечественных авторов -в 50-60%случаев), которая представляет собой вуалевидную ткань, располагающуюся в виде непрерывной полосы или островками (чаще серо-белого или желтоватого цвета),закрывающую и тем самым блокирующую трабекулярную зону радужно-роговичного угла.

    2) Высокое прикрепление радужки, когда корень ее выдвинут вперед и закрывает трабекулу (10-15%), чаще бывает неравномерно высокое прикрепление радужки.

    3) Группа аномалий, приводящих к трабекулярной или интрасклеральной ретенции: отсутствие дифференцировки трабекулы (ее недоразвитие), недостаточное развитие или отсутствие склерального синуса (шлеммова канала), которые затрудняют или блокируют отток внутриглазной жидкости через УПК (15-25%).

    4) Обнаруженные аномалии встречаются в различных сочетаниях.

    В последние годы популярным является термин гониодисгенез - задержка в развитии и дифференцировки УПК. Распространена классификация врожденной глаукомы с выделением трех степеней гониодисгенеза (Э.Г.Сидоров и М.Г.Мирзаянц, 1991). Существенными признаками гониодисгенеза I степени являлись: широкое прикрепление пучков ресничной мышцы к гипопластичному трабекулярному переплету, относительная сохранность склерального синуса. Гониодисгенез II степени характеризовался выраженным трабекулодисгенезом, сочетающимся с передним прикреплением радужной оболочки, нарушении топографии синуса и частым его сужением. При гониодисгенезе III степени отмечена тяжелая врожденная патология всех элементов дренажной зоны: переднее прикрепление радужной оболочки к измененной трабекуле, резкое сужение склерального синуса.

    С появлением широкопольной цифровой педиатрической ретинальной камеры стало возможным проведение исследования структур УПК у детей без наркоза. Данный метод позволяет документировать результаты исследований в цифровом виде и проводить сравнительный анализ изменений в динамике. Иридокорнеальная гониография, с помощью ретинальной камеры, является объективным методом ранней диагностики патологических процессов в углу передней камеры глаза.

    Тонометрия (исследование уровня внутриглазного давления и гидродинамики глаза)

    Для контроля ВГД рекомендовано использовать тонометр Маклакова (стандарт тонометрии в РФ), аппланационный тонометр Гольдмана (стандарт тонометрии в мире) или различные типы бесконтактных тонометров. Удобным для детей представляется автоматические портативные тонометры с контактной (рикошетной) методикой измерения, позволяющие измерять ВГД без местной анестезии, в том числе у детей раннего возраста.

    Многим современным методикам «приборной» тонометрии свойственны ошибки результатов измерения, обычно в сторону завышения показателей офтальмотонуса. Они во многом связаны с возрастной спецификой механических свойств роговицы, еще более изменяющихся на фоне развития гидрофтальма. Поэтому при получении противоречивых показателей ВГД или сомнении в их достоверности целесообразно прибегнуть к офтальмотонометрии с помощью тонометра Маклакова.

    Цифры ВГД у детей могут не отражать истинной картины заболевания, т.к. растяжение фиброзной капсулы глаза компенсирует его повышением. Оптимальные характеристики офтальмотонуса должны рассматриваться в совокупности с морфометрией глаза.

    Самой главной отличительной особенностью детского глаза является возможность обратного развития патологических изменений зрительного нерва (экскавации) при своевременно компенсированном ВГД.

    При анализе данных тонометрии учитывают абсолютные цифры уровня ВГД, суточные колебания и разницу офтальмотонуса между глазами. Суточные колебания уровня ВГД, а также его асимметрия между парными глазами у здоровых лиц, как правило, находятся в пределах 2-3 мм.рт.ст. и лишь в редких случаях достигают 4-6 мм.рт.ст. Чем выше исходный средний уровень ВГД, тем шире могут быть суточные колебания офтальмотонуса.

    Рт – показатели тонометрии при измерении ВГД контактным тонометром Маклакова, чаще грузом массой 10 г.

    Р0 – истинное ВГД – показатели тонометрии при измерении ВГД большинством современных методов (тонометрия по Гольдману, пневмотонометрия, тонометрия Icare и т.д.).

    Статистическая норма истинного уровня ВГД (Po) составляет от 10 до 21 мм рт.ст., тонометрического уровня ВГД (Pt) – от 12 до 25 мм рт.ст.

    В связи с тем, что на оценку данных тонометрии в значительной степени оказывает влияние толщина и диаметр роговицы, претерпевающие существенные изменения у детей на фоне развития глаукомы, целесообразно учитывать и эти параметры.

    Исследование толщины роговицы позволяет более правильно интерпретировать данные тонометрии глаза. Данные тонометрии в глазах с роговицей, имеющей толщину в центре более 580 мкм, нуждаются в коррекции в сторону понижения (реальное ВГД ниже полученных данных).

    Ультразвуковые методики.

    Важное место в диагностике врожденной глаукомы занимает УЗ-биометрия (А-сканирование), которая позволяет определить размеры глазного яблока, глубину передней камеры и тем самым выявить тенденцию к прогрессированию глаукомы и оценить стадию процесса. В-сканирование позволяет оценить состояние внутренних структур глаза (плотность оболочек, стекловидного тела, хрусталика и др.), что особенно актуально при непрозрачных преломляющих средах.

    Методика ультразвуковой компьютерной биомикроскопии позволяет получать четкое изображение структур переднего отрезка глаза (особенно важным это представляется при помутнении роговицы), структур УПК, дренажной зоны, в частности трабекулы. При этом возможно также измерить толщину роговицы (мм), радужки (мм), глубину передней камеры(мм),величину иридокорнеального угла (град.) и др.

    При врожденной глаукоме акустическая картина переднего сегмента глаза характеризуется уплощением и уменьшением рельефа радужки на всем протяжении, гипоплазией склеральной шпоры, аномальным ее положением или ее отсутствием, уменьшением дистанции “трабекула-радужка” и др. Патологические изменения можно обнаружить и в отношении структуры, размеров и положения цилиарного тела, его отростков и других структур глазного яблока. Причем особенности этих изменений в определенной мере характеризуют форму и стадию глаукомы, что позволяет выработать оптимальную тактику хирургического лечения таких больных, особенно при нарушении прозрачности оптических сред глаза.

    Офтальмоскопия

    Одними из основных причин снижения зрительных функций у детей с врожденной глаукомой является развитие глаукомной оптической нейропатии, что закономерно требует детальной характеристики изменений диска зрительного нерва (ДЗН). Сложность заключается в частой невозможности визуализации структур глазного дна у детей с врожденной глаукомой из-за помутнений роговицы.

    Для глаукомы характерны атрофические изменения в диске зрительного нерва, проявляющиеся в деколорации (побледнении) атрофических участков диска, в расширении и деформации его экскавации.

    Оптимальным методом выявления изменений структуры ДЗН является офтальмоскопия:

    - обратная офтальмоскопия на щелевой лампе с линзами 60, 78 или 90 Д;

    - прямая офтальмоскопия на щелевой лампе через центральную часть линзы Гольдмана или Ван Бойнингена.

    При осмотре ДЗН при подозрении на глаукому и при врожденной глаукоме необходимо проводить количественную и качественную оценку следующих параметров.

    Количественная оценка ДЗН:

    - размер диска зрительного нерва;

    - соотношение экскавации к диску (Э/Д);

    - соотношение нейроретинального пояска (НРП) к диску.

    Качественная оценка ДЗН:

    - форма, высота и цвет нейроретинального пояска (НРП), его отсутствие (краевая экскавация) или тенденция к истончению;

    - деколорация атрофических участков ДЗН;

    - сдвиг сосудистого пучка.

    Размер диска зрительного нерва. Среднестатистические размеры ДЗН находятся в пределах от 1,9 до 2,8 мм². К малым размерам ДЗН относят диски площадью меньше 1,5 мм², к средним – от 1,51 до 2,5 мм², к большим >2,51 мм². При врожденной глаукоме вследствие растяжения глаза чаще встречаются большие ДЗН.

    При миопии он может слегка (на 1,2±0,15%) возрастать на каждую диоптрию аметропии. Чем больше ДЗН, тем больше Э/Д и НРП. Соответственно, большая экскавация в большом ДЗН может быть физиологической, в то время как маленькая экскавация при очень маленьком ДЗН может свидетельствовать о глаукомном повреждении зрительного нерва, что существенно затрудняет офтальмоскопическую диагностику рассматриваемой патологии.

    Соотношение Э/Д. Физиологическая экскавация ДЗН ,как правило, имеет горизонтально-овальную форму: горизонтальный диаметр длиннее вертикального примерно на 8%. Увеличенная физиологическая экскавация при большом размере диска чаще имеет округлую форму. В норме экскавация на обоих глазах симметричная. При этом в 96% случаев соотношение Э/Д находится в пределах 0,2 ДД. В начальной стадии глаукомы чаще четких различий между физиологической и глаукомной экскавацией не существует. Можно визуализировать сдвиг и перегиб сосудистого пучка. При прогрессировании врожденной глаукомы с высокими цифрами ВГД, уже при развитой стадии формируется довольно объемная экскавация.

    Расширение экскавации при глаукоме обычно происходит во всех направлениях, однако чаще всего – в вертикальном направлении за счет истончения НРП в верхнем и нижнем секторах ДЗН, что связано с особенностями строения решетчатой пластинки.

    В норме глубина экскавации зависит от площади экскавации и, косвенно, от размеров диска, а при врожденной глаукоме -от уровня ВГД. Самые глубокие экскавации наблюдаются в глазах с высоким уровнем ВГД. На глаукоматозный характер экскавации указывает обнажение решетчатой пластинки в верхней и нижней зоне экскавации. При обследовании пациента с повышенным уровнем ВГД следует придерживаться принципа: чем больше экскавация, тем больше вероятность, что она глаукоматозная.

    Нейроретинальный поясок (НРП).

    При развитии глаукоматозного процесса постепенно происходит уменьшение ширины нейроретинального пояска, которое может быть равномерным по всей окружности, локальным краевым или сочетанным.Для глаукомы характерны атрофические изменения в ДЗН. Клинически они проявляются в деколорации (побледнении) участков НРП, чаще в темпоральной зоне (необходимо дифференцировать с атрофией зрительного нерва неглаукомного генеза).

    Перипапиллярная атрофия –истончение/разрушение хориоретинальной ткани вокруг диска зрительного нерва. При глаукоме распространенность перипапиллярной атрофии выше, особенно с носовой стороны перипапиллярного пространства.

    Следует помнить, что отдельно каждого из приведенных симптомов в отдельности недостаточно для постановки правильного диагноза. Правильное решение может дать только комплексная оценка состояния ДЗН и перипапиллярной сетчатки. Для документирования состояния ДЗН удобно использовать цветные фотографии.


Страница источника: 25

Фемтосекундные технологии в офтальмологии Юбилейная всероссийская научно-практическая конференцияФемтосекундные технологии в офтальмологии Юбилейная всеросси...

Федоровские чтения - 2017 XIV Всероссийская научно-практическая конференция с международным участиемФедоровские чтения - 2017 XIV Всероссийская научно-практичес...

Федоровские чтения - 2017 Сателлитные симпозиумы в рамках XIV Всероссийской научно-практической конференцииФедоровские чтения - 2017 Сателлитные симпозиумы в рамках XI...

Актуальные проблемы офтальмологии XII Всероссийская научная конференция молодых ученыхАктуальные проблемы офтальмологии XII Всероссийская научная ...

Восток – Запад 2017 Международная научно-практическая конференция по офтальмологииВосток – Запад 2017 Международная научно-практическая конфер...

Белые ночи - 2017 Сателлитные симпозиумы в рамках Международного офтальмологического конгресса Белые ночи - 2017 Сателлитные симпозиумы в рамках Международ...

Новые технологии в контактной коррекции.  В рамках  Всероссийской научно-практической конференции «Новые технологии в офтальмологии - 2017»Новые технологии в контактной коррекции. В рамках Всеросси...

Новые технологии в офтальмологии -  2017 Всероссийская научно-практическая конференция Новые технологии в офтальмологии - 2017 Всероссийская научн...

XVI Всероссийская школа офтальмологаXVI Всероссийская школа офтальмолога

Сателлитные симпозиумы в рамках конференции «Современные технологии лечения витреоретинальной патологии - 2017»Сателлитные симпозиумы в рамках конференции «Современные тех...

Современные технологии лечения витреоретинальной патологии - 2017 ХV Научно-практическая конференция с международным участиемСовременные технологии лечения витреоретинальной патологии -...

«Живая хирургия» в рамках конференции «Современные технологии лечения витреоретинальной патологии - 2017»«Живая хирургия» в рамках конференции «Современные технологи...

Роговица I. Ультрафиолетовый кросслинкинг роговицы в лечении кератоэктазий Научно-практическая конференция с международным участиемРоговица I. Ультрафиолетовый кросслинкинг роговицы в лечении...

Сателлитные симпозиумы в рамках ХIV ежегодного конгресса Российского глаукомного обществаСателлитные симпозиумы в рамках ХIV ежегодного конгресса Рос...

Сателлитные симпозиумы в рамках конференции Современные технологии катарактальной и рефракционной хирургии - 2016Сателлитные симпозиумы в рамках конференции Современные техн...

«Живая» хирургия в рамках конференции Современные технологии катарактальной и рефракционной хирургии - 2016«Живая» хирургия в рамках конференции Современные технологии...

Современные технологии катарактальной и рефракционной хирургии - 2016Современные технологии катарактальной и рефракционной хирург...

Сателлитные симпозиумы в рамках IX Российского общенационального офтальмологического форумаСателлитные симпозиумы в рамках IX Российского общенациональ...

На стыке науки и практикиНа стыке науки и практики

Федоровские чтения - 2016 XIII Всероссийская научно-практическая конференция с международным участиемФедоровские чтения - 2016 XIII Всероссийская научно-практиче...

Актуальные проблемы офтальмологии XI Всероссийская научная конференция молодых ученыхАктуальные проблемы офтальмологии XI Всероссийская научная к...

Восток – Запад 2016 Научно-практическая конференция по офтальмохирургии с международным участием Восток – Запад 2016 Научно-практическая конференция по офтал...

Белые ночи - 2016 Сателлитные симпозиумы в рамках Международного офтальмологического конгресса Белые ночи - 2016 Сателлитные симпозиумы в рамках Международ...

Невские горизонты - 2016 Научная конференция офтальмологовНевские горизонты - 2016 Научная конференция офтальмологов

Сателлитные симпозиумы в рамках научной конференции офтальмологов «Невские горизонты - 2016»Сателлитные симпозиумы в рамках научной конференции офтальмо...

Новые технологии в офтальмологии 2016 Всероссийская научно-практическая конференция Новые технологии в офтальмологии 2016 Всероссийская научно-п...

Витреоретинальная хирургия. Макулярный разрывВитреоретинальная хирургия. Макулярный разрыв

Современные технологии лечения витреоретинальной патологии - 2016 ХIV Научно-практическая конференция с международным участиемСовременные технологии лечения витреоретинальной патологии -...

Совет экспертов, посвященный обсуждению первого опыта использования новой офтальмологической системы CENTURION®Совет экспертов, посвященный обсуждению первого опыта исполь...

HRT/Spectralis* Клуб Россия 2015 – технология, ставшая незаменимой!HRT/Spectralis* Клуб Россия 2015 – технология, ставшая незам...

Три письма пациента. Доказанная эффективность леченияТри письма пациента. Доказанная эффективность лечения

Синдром «сухого» глаза: новые перспективыСиндром «сухого» глаза: новые перспективы

Многоликий синдром «сухого» глаза: как эффективно им управлять?Многоликий синдром «сухого» глаза: как эффективно им управлять?

Прошлое... Настоящее! Будущее?Прошлое... Настоящее! Будущее?

Проблемные вопросы глаукомы IV Международный симпозиумПроблемные вопросы глаукомы IV Международный симпозиум

Секундо В. Двухлетний личный опыт с линзами AT Lisa Tri и AT Lisa Tri ToricСекундо В. Двухлетний личный опыт с линзами AT Lisa Tri и AT...

Инновации компании «Алкон» в катарактальной и рефракционной хирургииИнновации компании «Алкон» в катарактальной и рефракционной ...

Применение устройств HOYA iSert Toric. Применение торических ИОЛ HOYA iSert Toric в рефракционной хирургии катарактыПрименение устройств HOYA iSert Toric. Применение торических...

Рейтинг@Mail.ru