Реферат RUS  Реферат ENG  Литература  Полный текст
УДК:615.032:616-08-031.84

Доставка лекарственных веществ к структурам заднего сегмента глаза при помощи интравитреального имплантата


1Калужский филиал «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова Росмедтехнологии»
2Научно-экспериментальное производство «Микрохирургия глаза
3МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова Росмедтехнологии» Минздрава РФ

     Разработка систем доставки лекарственных веществ к структурам заднего сегмента глаза в настоящее время является перспективным направлением в офтальмологии. При лечении заболеваний сетчатки, хориоидеи и зрительного нерва более предпочтительной является «адресная» доставка лекарственных препаратов [6, 9].

    Наличие в тканях глаза сложных гистогематических барьеров ограничивает поступление веществ к поврежденным структурам. Это объясняет низкую биодоступность лекарственных веществ при их системном и периокулярном введении [2].

    В настоящее время единственным способом, при котором создается высокая интравитреальная и интраретинальная концентрация препарата, является интраокулярное введение лекарственных веществ. Введение веществ в полость стекловидного тела позволяет поддерживать концентрацию лекарственного препарата в течение более длительного времени по сравнению с другими путями доставки. Также интравитреальное введение снижает возможные побочные системные эффекты ввиду меньшей дозы и количества вещества, которое выводится из глаза и попадает в системный кровоток [3, 4].

    При интравитреальном введении лекарственное вещество попадает в ретроцилиарные цистерны стекловидного тела. В случае сохранной структуры стекловидного тела оно достигает задних его отделов через 8-48 часов. При нарушении структуры стекловидного тела или при возрастных его изменениях концентрация лекарственного вещества быстро снижается из-за выведения его током жидкости во влагу передней камеры. После проведенной инъекции препарат быстро выводится из витреальной полости преимущественно путем диффузии, при этом период полувыведения составляет 24 часа и менее.

    Следовательно, для поддержания терапевтической концентрации препарата в заднем сегменте глазного яблока требуются периодические повторные инъекции, что повышает риск развития осложнений [5, 10].

    На сегодняшний день для поддержания интраокулярной терапевтической концентрации лекарственного препарата разрабатываются различные специализированные системы для интравитреальной доставки лекарственных веществ, которые можно объединить в две группы: небиодеградируемые имплантаты и биодеградируемые имплантаты [12].

    Среди небиодеградируемых интравитреальных имплантатов выделяют два типа: матриксные и по типу резервуаров. В матриксных системах лекарственное вещество равномерно распределено в основном материале имплантата. Имплантаты по типу резервуаров состоят из центрального ядра препарата, окруженного слоем проницаемого или полупроницаемого полимера, и силикона. При этом диффузия лекарственного вещества происходит медленно по градиенту концентрации и сопровождается непрерывным выделением действующего вещества, что может приводить к превышению допустимых терапевтических значений препарата в витреальной полости. Общим недостатком всех небиодеградируемых систем является необходимость их последующего удаления, что повышает риск развития послеоперационных осложнений [7, 13].

    Биодеградируемые интравитреальные системы доставки лекарственных веществ в большинстве случаев представляют собой конструкции на основе полимеров и сополимеров молочной и гликолиевой кислот. Скорость высвобождения лекарственного вещества из данных систем зависит от молекулярного веса и скорости деградации полимерной матрицы, а также укладки самого лекарственного препарата в имплантате. Биодеградируемые имплантаты в отличие от небиодеградируемых с течением времени подвергаются полной абсорбции в витреальной полости и не требуют их последующего удаления, что значительно снижает риск развития послеоперационных осложнений [8, 11].

    В настоящее время не существует оптимальных систем доставки лекарственных веществ, удовлетворяющих всем необходимым требованиям. Кроме того, узкие показания для использования современных интравитреальных имплантатов ограничивают их применение в офтальмологии.

    Цель

    Разработка и экспериментальное обоснование способа доставки лекарственных веществ к структурам заднего сегмента глаза с помощью интравитреального имплантата.

    Материал и методы

    Совместно с ООО «Научно-экспериментальное производство «Микрохирургия глаза» был разработан имплантат, который представляет собой интерполиэлектролитный многослойный комплекс на основе поливинилпирролидона, молочной кислоты и гликозаминогликанов трубчатой формы, длиной 4,0 мм и диаметром 0,3 мм, с толщиной каждого слоя около 10 мкрн, количеством слоев в имплантате 15 (рис. 1). Особенностью имплантата является возможность чередования насыщенных и ненасыщенных лекарственным веществом слоев. При этом скорость резорбции каждого слоя может регулироваться количеством поперечных сшивок, предусмотренных конструкцией имплантата.

    Проведена сканирующая электронная микроскопия имплантата для подтверждения его слоистой структуры. Исследование было выполнено на базе Федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Московский государственный университет им. М.В. Ломоносова» на кафедре высокомолекулярных соединений, на электронном микроскопе JEOL JSM-6610 (JEOL Ltd., Япония).

    Исследование резорбции предложенного имплантата проводилось в фиксированном объеме 0,9% раствора NaСl, равном 5,0 мл, в герметичной пробирке при температуре 37° С (5 имплантатов). Один раз в сутки производилась замена 3,0 мл физиологического раствора с сохранением заданной температуры и объема. Замер времени резорбции имплантата проводился от начала эксперимента до его полного визуального исчезновения в пробирке.

     Изучение функции разработанного имплантата в качестве контейнера лекарственного вещества проводилось на примере дексаметазона (5 имплантатов). В лабораторных условиях выполнялось насыщение экспериментального образца дексаметазоном в дозе 300 мкг. При этом чередовали насыщенные и ненасыщенные лекарственным веществом слои для предотвращения избыточного выделения действующего вещества. Варьируя количеством поперечных сшивок, был разработан имплантат, предусматривающий следующий профиль растворения слоев: насыщенный слой – 3 суток, ненасыщенный – 1 сутки. Далее насыщенный дексаметазоном имплантат помещался в герметичную пробирку с физиологическим раствором в объеме 5,0 мл при температуре 37° С. Учитывая средний суточный объем продукции внутриглазной жидкости, производили замену физиологического раствора в пробирке в объеме 3 мл/сут. Забор аликвоты осуществляли каждый день до момента полной резорбции имплантата. Для определения концентрации дексаметазона данную жидкость исследовали с помощью спектрофотометрии (спектрофотометр Lambda EZ 201, Perkin Elmer Corporation, США) в ультрафиолетовой области спектра электромагнитного излучения с длиной волны, соответствующей максимуму поглощения для дексаметазона, λmax=242 нм. Количественное определение дексаметазона проводили методом градуировочного графика. Для этого в лабораторных условиях готовили серию стандартных растворов с различным содержанием дексаметазона и измеряли их оптическую плотность при длине волны λmax=242 нм и толщине слоя исследуемого раствора в кювете l=1,0 см. Далее строили градуировочный график в координатах A÷C, где A – значение оптической плотности раствора, C – концентрация дексаметазона. Исследуемую жидкость из пробирки с имплантатом помещали в кювету спектрофотометра с толщиной слоя l=1,0 см и определяли оптическую плотность раствора. Затем по градуировочному графику, используя значение оптической плотности, вычисляли концентрацию дексаметазона в растворе.

    Результаты и обсуждение

     Согласно результатам сканирующей электронной микроскопии разработанный имплантат имеет слоистую структуру. Слои соединены между собой с помощью поперечных сшивок, образующихся из полимерной матрицы в ходе технологического процесса изготовления имплантата. Размер одного слоя с поперечными сшивками составляет 10 микрон (рис. 2).

    Процесс деградации полимерного остова разработанного имплантата происходит путем гидролиза. Скорость деградации зависит от количества поперечных сшивок между слоями имплантата и может вариабельно изменяться. В ходе изучения процесса деградации ненасыщенного имплантата время его полной резорбции составило 31 день.

    В разработанной системе доставки лекарственный препарат равномерно распределен в каждом насыщенном слое. Высвобождение лекарственного вещества из имплантата происходит в результате деградации полимера и диффузии вещества в окружающую жидкость.

    Методом определения профиля высвобождения дексаметазона из биодеградируемого имплантата является спектрофотометрия в ультрафиолетовой области спектра электромагнитного излучения. Данный метод основан на поглощении монохроматического излучения и характеризуется законом Бугера-Ламберта-Бера, определяющим ослабление параллельного монохроматического пучка света при распределении его в поглощающей среде [1]:

    I=I0×10-ελ· c· l,

    где: I0 – интенсивность падающего излучения,

     I – интенсивность прошедшего излучения,

     с – концентрация поглощающего вещества (моль/л),

     l – толщина поглощающего слоя (см),

     ελ – молярный коэффициент поглощения (моль–1л·см–1).

    При проведении спектрофотометрического анализа большое значение имеет выбор растворителя, который должен определяться растворимостью анализируемого вещества и его способностью к поглощению излучения. Растворитель не должен поглощать в исследуемом интервале длин волн. Предел пропускания излучения физиологического раствора равен 185 нм, поэтому нельзя снять спектр вещества в физиологическом растворе, поглощающего при длине волны меньше 185 нм. Длина волны, соответствующая максимуму поглощения для дексаметазона, равна 242 нм, что удовлетворяет необходимым требованиям выбора растворителя [1].

    Профиль высвобождения дексаметазона из имплантата описывается экспоненциальной кривой, ход которой отражает постепенное увеличение концентрации дексаметазона в течение первых 3-х суток с падением концентрации к середине 4-х суток, что соответствует периоду растворения слоя, ненасыщенного лекарственным веществом. Возобновление повышения концентрации лекарственного агента происходит на 5-е сутки и продолжается до 7-х суток, после чего, на 8-е сутки, вновь отмечается снижение концентрации дексаметазона (рис. 3). В целом данный цикл высвобождения лекарственного вещества повторяется 8 раз. Спустя 31 день активный агент высвобождается полностью, при этом биополимерная матрица резорбируется в полном объеме. На 32-е сутки определяется остаточная концентрация дексаметазона (рис. 4). Следует отметить, что в течение всего периода наблюдения определяется постепенное накопление исследуемого вещества в пробирке, что объясняется особенностями эксперимента in vitro.

    Варьируя основными составляющими компонентами и количеством поперечных сшивок, можно изготовить имплантаты для высвобождения терапевтического агента в течение различного периода времени.

    Выводы

    Разработан имплантат для доставки лекарственных веществ к структурам заднего сегмента глаза, позволяющий пролонгировать пребывание препаратов в витреальной полости. Предложенный имплантат обеспечивает контролируемое периодическое выделение действующего вещества, предотвращающее превышение терапевтической концентрации препарата в окружающей среде, что обусловлено конструкцией имплантата.

    

    Поступила 24.12.2014.

    

    Сведения об авторах:

    Белый Юрий Александрович, докт. мед. наук, профессор, зам. директора по научной работе;

    Терещенко Александр Владимирович, докт. мед. наук, директор Калужского филиала ФГБУ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» Минздрава России

    Калужский филиал ФГБУ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» Минздрава России

    Новиков Сергей Викторович, зам. директора по производству ООО «Научно-экспериментальное производство «Микрохирургия глаза»

    Колесник Светлана Викторовна, аспирант;

    Колесник Антон Игоревич, аспирант

    ФГБУ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» Минздрава России


Страница источника: 34
Роговица I. Ультрафиолетовый кросслинкинг роговицы в лечении кератоэктазий Научно-практическая конференция с международным участиемРоговица I. Ультрафиолетовый кросслинкинг роговицы в лечении...

Сателлитные симпозиумы в рамках ХIV ежегодного конгресса Российского глаукомного обществаСателлитные симпозиумы в рамках ХIV ежегодного конгресса Рос...

Сателлитные симпозиумы в рамках конференции Современные технологии катарактальной и рефракционной хирургии - 2016Сателлитные симпозиумы в рамках конференции Современные техн...

«Живая» хирургия в рамках конференции Современные технологии катарактальной и рефракционной хирургии - 2016«Живая» хирургия в рамках конференции Современные технологии...

Современные технологии катарактальной и рефракционной хирургии - 2016Современные технологии катарактальной и рефракционной хирург...

Сателлитные симпозиумы в рамках IX Российского общенационального офтальмологического форумаСателлитные симпозиумы в рамках IX Российского общенациональ...

На стыке науки и практикиНа стыке науки и практики

Федоровские чтения - 2016 XIII Всероссийская научно-практическая конференция с международным участиемФедоровские чтения - 2016 XIII Всероссийская научно-практиче...

Актуальные проблемы офтальмологии XI Всероссийская научная конференция молодых ученыхАктуальные проблемы офтальмологии XI Всероссийская научная к...

Восток – Запад 2016 Научно-практическая конференция по офтальмохирургии с международным участием Восток – Запад 2016 Научно-практическая конференция по офтал...

Белые ночи - 2016 Сателлитные симпозиумы в рамках Международного офтальмологического конгресса Белые ночи - 2016 Сателлитные симпозиумы в рамках Международ...

Занимательная аккомодологияЗанимательная аккомодология

Невские горизонты - 2016 Научная конференция офтальмологовНевские горизонты - 2016 Научная конференция офтальмологов

Заболевания глазной поверхности. Взгляд со всех сторонЗаболевания глазной поверхности. Взгляд со всех сторон

Интересное об известномИнтересное об известном

Новые технологии в офтальмологии 2016 Всероссийская научно-практическая конференция Новые технологии в офтальмологии 2016 Всероссийская научно-п...

Витреоретинальная хирургия. Макулярный разрывВитреоретинальная хирургия. Макулярный разрыв

Современные технологии лечения витреоретинальной патологии - 2016 ХIV Научно-практическая конференция с международным участиемСовременные технологии лечения витреоретинальной патологии -...

Совет экспертов, посвященный обсуждению первого опыта использования новой офтальмологической системы CENTURION®Совет экспертов, посвященный обсуждению первого опыта исполь...

HRT/Spectralis* Клуб Россия 2015 – технология, ставшая незаменимой!HRT/Spectralis* Клуб Россия 2015 – технология, ставшая незам...

Три письма пациента. Доказанная эффективность леченияТри письма пациента. Доказанная эффективность лечения

Синдром «сухого» глаза: новые перспективыСиндром «сухого» глаза: новые перспективы

Многоликий синдром «сухого» глаза: как эффективно им управлять?Многоликий синдром «сухого» глаза: как эффективно им управлять?

Прошлое... Настоящее! Будущее?Прошлое... Настоящее! Будущее?

Проблемные вопросы глаукомы IV Международный симпозиумПроблемные вопросы глаукомы IV Международный симпозиум

Секундо В. Двухлетний личный опыт с линзами AT Lisa Tri и AT Lisa Tri ToricСекундо В. Двухлетний личный опыт с линзами AT Lisa Tri и AT...

Инновации компании «Алкон» в катарактальной и рефракционной хирургииИнновации компании «Алкон» в катарактальной и рефракционной ...

Применение устройств HOYA iSert Toric. Применение торических ИОЛ HOYA iSert Toric в рефракционной хирургии катарактыПрименение устройств HOYA iSert Toric. Применение торических...

Рейтинг@Mail.ru