Реферат RUS  Реферат ENG  Литература  Полный текст

Глубокая передняя послойная фемто-кератопластика в лечении пациентов с кератоконусом


1МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова Росмедтехнологии» Минздрава РФ

    На правах рукописи
    Паштаев Алексей Николаевич
    ГЛУБОКАЯ ПЕРЕДНЯЯ ПОСЛОЙНАЯ ФЕМТО-КЕРАТОПЛАСТИКА В ЛЕЧЕНИИ ПАЦИЕНТОВ С КЕРАТОКОНУСОМ
    14.01.07 — глазные болезни
    Автореферат диссертации на соискание ученой степени кандидата медицинских наук
    Москва 2013
    Работа выполнена в ФГБУ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» Минздрава России
    Научный руководитель Малюгин Борис Эдуардович — доктор медицинских наук, профессор

    Официальные оппоненты: Слонимский Юрий Борисович — доктор медицинских наук, профессор кафедры офтальмологии ГБОУ ДПО «РМАПО министерства здравоохранения РФ» Калинников Юрий Юрьевич — доктор медицинских наук, врач-офтальмолог высшей категории ФГБУ Клинической больницы управления делами президента РФ
    Ведущее учреждение ФГБУ «Научно-исследовательский институт глазных болезней» РАМН
    Защита диссертации состоится «14» октября 2013 г. в ____ часов на заседании диссертационного совета при ФГБУ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» Минздрава России по адресу: 127486, Москва, ул. Бескудниковский бульвар, дом 59А.
    С диссертацией можно ознакомиться в научной библиотеке ФГБУ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» Минздрава России по адресу: 127486, Москва, ул. Бескудниковский бульвар, дом 59А.
    Автореферат разослан «13» сентября 2013 г.
    Ученый секретарь диссертационного совета доктор медицинских наук Агафонова В.В.

    Список сокращений
    АСМ — атомно-силовая микроскопия
    ВГД — внутриглазное давление
    ГППК — глубокая передняя послойная кератопластика
    ДМ — Десцеметова мембрана
    КОЗ — корригированная острота зрения
    КСМ — конфокальная сканирующая микроскопия
    НКОЗ — некорригированная острота зрения
    ОКТ — оптическая когерентная томография
    ПК — передняя камера
    ППК — передняя послойная кератопластика
    CКП — сквозная кератопластика
    СЭ — сферический эквивалент рефракции
    Ф-ГППК — глубокая передняя послойная фемто-кератопластика
    Ф-ППК — передняя послойная фемто-кератопластика
    ФСЛ — фемтосекундный лазер
    ЭК — эндотелиальные клетки
    CH — корнеальный гистерезис (corneal hysteresis)
    CRF — фактор резистентности роговицы (corneal resistance factor)
    ORA — анализатор биомеханических свойств роговицы (Ocular Response Analyzer)
    p — t-критерий Стьюдента для независимых данных
    pf — коэффициент достоверности по Фишеру
    pm-u — коэффициент достоверности по Манну-Уитни
    pn — t-критерий Стьюдента для зависимых данных
    pw — коэффициент достоверности по Вилкоксону

    ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
    По данным ВОЗ, около 314 миллионов человек в мире имеют нарушения зрения, причём до 25% всей глазной патологии приходится на заболевания роговицы. Кератоконус является одной из самых распространённых причин слабовидения и составляет 0,6-0,9% (Каспаров А.А., 1988; Севостьянов Е.Н., 2006; Coperman P.W., 1965; Owens H., 2003).
    Кератоконус — это генетически детерминированное дистрофическое заболевание роговицы, характеризующееся нарушением биомеханической стабильности за счет структурной дезорганизации коллагеновых волокон, которое приводит к оптической неоднородности ткани роговицы с последующим истончением, конусовидным выпячиванием и нарушением прозрачности (Пучковская Н.А., Титаренко З.Д., 1990).
    Представляя собой наиболее часто встречаемую форму дистрофии роговицы с распространённостью в популяции 0,033% — 0,054% (Либман Е.С., Шахова Е.В. с соавт., 2005 г; Кеnnedy R., 1986; Rabinowitz, Y. S., 1998;), кератоконус является одним из типичных показаний к проведению сквозной кератопластики (СКП) (Дронов М.М. 1997; Мороз З.И. с соавт., 1997; Boxer Wachler B.S., 2007). Последняя, хотя и широко применяется при различных дистрофиях и помутнениях роговицы, имеет ряд известных недостатков, таких как высокий риск операционных и послеоперационных осложнений, длительная зрительная реабилитация, послеоперационный астигматизм высокой степени, отторжение и ограниченный срок жизни трансплантата, нарушение архитектоники переднего отрезка глаза, низкая прочность послеоперационного рубца (Tuft S. J. et al., 1992; Koralewska-Makar A. et al., 1996, Melles G.R., 1999; Borderie, V. M. et al., 2011). Все выше сказанное обуславливает поиск путей по усовершенствованию методов кератопластики.
    Послойная пересадка роговицы в этом отношении является перспективной, обладая целым рядом преимуществ. К ним относят: отсутствие риска эндотелиального отторжения, сохранную структуру переднего сегмента глаза, и как следствие — ускоренную зрительную реабилитацию, больший срок жизни трансплантата, снижение требований к отбору донорского материала, в частности к плотности эндотелиальных клеток (ПЭК) (Малюгин Б.Э. с соавт., 2010; Javadi, M. A. et al., 2010; Borderie, V. M. et al., 2011). Ее выполняют при дистрофиях и помутнениях роговицы, не затрагивающих всю ее толщу, при условии наличия нормальной ПЭК и отсутствии дефектов Десцеметовой мембраны (ДМ). Как правило это больные с кератоконусом III-IV стадий, помутнениями после инфекционных кератитов, травм и фоторефракционных вмешательств на роговице.
    Тем не менее, послойная кератопластика имеет ряд недостатков — техника операции сложнее, она более продолжительна по времени, имеется риск перфорации задних слоев роговицы и возможность помутнения интерфейса донор-реципиент.
    Последний нивелируется, если производится полная замена стромы роговицы вплоть до ДМ, т.е. операция проводится по методике глубокой передней послойной кератопластики (ГППК). Однако, ДМ весьма деликатна и легко травмируется в ходе оперативного вмешательства. Именно поэтому существенным стало предложение Anwar и Teichmann (2002) формировать так называемый «большой пузырь» из воздуха, отделяющий заднюю строму роговицы от ДМ, что упростило ГППК, сделало её более прогнозируемой и способствовало популяризации.
    Тем не менее, распространение ГППК не стало повсеместным, поскольку нерешенным является ряд ключевых вопросов, связанных с безопасностью и повторяемостью данной методики. Даже самые опытные хирурги не могут полностью исключить разрыв ДМ, поэтому вплоть до 23% операций ГППК завершается как СКП (Janji V. et al., 2010).
    Ряд исследований показал, что при помощи фемтосекундных лазеров (ФСЛ) можно частично стандартизировать процедуру послойной кератопластики, повышая её безопасность и предсказуемость (Farid M., Steynert R. F., 2009; Buzzonetti, L. et al., 2010, 2011; Chamberlian W. D. et al., 2011). Анализ зарубежной и отечественной литературы выявил упоминания о возможности проведения передней послойной кератопластики (ППК) исключительно при помощи ФСЛ не прибегая к процедурам мануальной или пневматической очистки ДМ (Hoffart, L. et al., 2007; Soong H. K. et al., 2008). При этом, однако, не имеется ни полноценного описания данного метода, ни оценки его результативности.

    Цель исследования: повысить эффективность лечения кератоконуса III-IV степени путём использования технологии глубокой передней послойной фемто-кератопластики.

    Задачи:
    1. Обосновать в эксперименте применение методики передней послойной фемто-кератопластики и определить оптимальные параметры воздействия лазера Intralase FS 60 kHz для выкраивания трансплантата.
    2. Разработать и апробировать в клинике метод передней послойной фемто-кератопластики.
    3. Разработать технологию глубокой передней послойной фемто-кератопластики.
    4. Оценить клинико-функциональные исходы разработанных методик передней и глубокой передней послойной фемто-кератопластики в сравнительном аспекте с результатами глубокой передней послойной кератопластики, выполненной по мануальной технологии.

    Научная новизна
    1. Впервые методом атомно-силовой микроскопии была проведена оценка степени иррегулярности поверхности горизонтального среза, выполненного с помощью ФСЛ в глубоких слоях донорской роговицы при использовании различных настроек, и определены следующие параметры лазерного воздействия, позволяющие получить наиболее ровную поверхность, среднеквадратичная шероховатость которой не превышает 112±17 нм: энергия 1 мкДж, расстояние между импульсами/рядами 4 мкм (pm-u=0,01).
    2. Впервые показано, что проведение фемтолазерной послойной кератопластики пациентам с кератоконусом улучшает биомеханические свойства роговицы, что проявляется в достоверном повышении корнеального гистерезиса и фактора резистентности роговицы, по сравнению с дооперационными данными, в случае передней послойной фемто-кератопластики в 1,6 и 2 раза (pw<0,001), а в случае глубокой передней послойной фемто-кератопластики в 1,5 и 1,9 раза (pn<0,001), соответственно.
    3. Впервые проведён сравнительный анализ клинико-функциональных результатов глубокой передней послойной фемто-кератопластики и глубокой передней послойной кератопластики, выполненной по мануальной технологии, который выявил, что на сроке наблюдения 1 год методики имеют сопоставимые результаты по остроте зрения и потере эндотелиальных клеток (p>0,05), при этом применение фемтосекундного лазера позволяет получить достоверно меньшие значения послеоперационного астигматизма (3,7±1,4 против 4,8±1,9 дптр, p=0,04), а также повысить долю качественного результата лечения (КОЗ 0,5 и выше) с 71,4% до 97,1% (pf =0,013).

    Практическая значимость
    1. Разработан и апробирован в клинической практике способ хирургического лечения кератоконуса методом глубокой передней послойной фемто-кератопластики который, благодаря особому алгоритму нанесения разрезов, включающему формирование несквозного заднего разреза в роговице реципиента ниже плоскости ламеллярного, позволил отказаться от использования острых колюще-режущих инструментов для введения воздуха в заднюю строму и исключить связанные с этим риски, а также увеличить частоту успешного формирования «большого пузыря» на 11,3% за счёт уменьшения выхода воздуха на периферию роговицы, и, тем самым, снизить количество перфораций ДМ на 11,4% и количество операций, конвертированных в СКП, в 3,3 раза.
    2. Разработан и впервые апробирован в клинической практике способ хирургического лечения кератоконуса методом глубокой передней послойной фемто-кератопластики, позволяющий всего за 2 запуска лазера получить сложный профиль разреза по типу «шляпки гриба» в роговице донора и реципиента, что снизило расходы на проведение данной операции и повысило её экономическую доступность.
    3. В ходе разработки глубокой передней послойной фемто-кератопластики подобраны оптимальные по уровню энергетического воздействия, скорости формирования срезов и их качеству параметры лазера для роговицы реципиента: несквозной задний разрез — расстояние между точками/рядами — 2 мкм, энергия — 1,5 мкДж; ламеллярный разрез — расстояние между точками/рядами — 8 мкм, энергия — 2,0 мкДж, растровый паттерн; передний разрез — расстояние между точками/рядами — 2 мкм, энергия — 1,5 мкДж.
    4. Показано, что применение метода глубокой передней послойной фето-кертаопластики для лечения пациентов с кератоконусом, по сравнению с мануальной технологией, позволяет ускорить зрительную реабилитацию пациентов и получить достоверно более высокое значения как корригированной (0,54±0,15 против 0,42±0,14, p=0,023), так и некорригированной (0,21±0,17 против 0,12±0,13, p=0,031) остроты зрения на сроке 6 месяцев после операции.

    Основные положения, выносимые на защиту
    Применение разработанного метода глубокой передней послойной фемто-кератопластики, включающего новый алгоритм нанесения разрезов, в котором несквозной задний разрез в роговице реципиента формируют ниже плоскости ламеллярного, по сравнению с глубокой передней послойной кератопластикой, выполненной по мануальной технологии, позволяет:
    - ускорить зрительную реабилитацию пациентов, что проявляется в повышении корригированной (0,54±0,15 против 0,42±0,14, p=0,023) и некорригированной (0,21±0,17 против 0,12±0,13, p=0,031) остроты зрения на сроке наблюдения 6 месяцев;
    - уменьшить значения послеоперационного астигматизма на сроке наблюдения 1 год с 4,8±1,9 до 3,7±1,4 дптр (p=0,04);
    - повысить долю качественного результата лечения (КОЗ 0,5 и выше на сроке наблюдения 1 год) с 71,4% до 97,1% (pf =0,013);
    - улучшает биомеханические свойства роговицы, что проявляется в повышении корнеального гистерезиса в 1,5 и фактора резистентности роговицы в 1,9 раза (pn<0,001), по сравнению с дооперационными данными.

    Апробация работы
    Основные положения диссертации доложены и обсуждены на научно-практических конференциях с международным участием «Актуальные проблемы офтальмологии» в рамках IX съезда офтальмологов России (Москва, 2010), «Фёдоровские чтения» (Москва, 2011), «Патология роговицы» (Москва, 2012), на международном симпозиуме «Фемто-форум 2012» (Барселона, 2012), на научно-практической конференции «RSCRS-2013» (Санкт-Петербург, 2013), на клинических конференциях ФБГУ МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова (Москва, 2012, 2013).

    Публикации
    По теме диссертации опубликовано 6 печатных работ, из них — 4 в научных журналах, рецензируемых ВАК РФ. Получено 2 патента РФ на изобретения.
    Реализация результатов работы

    РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ внедрены в научно-клиническую и практическую деятельность отдела трансплантационной и оптико-реконструктивной хирургии головной организации ФГБУ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» Минздрава России (Москва) и Чебоксарского филиала ФГБУ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» Минздрава России, а также включены в курс цикла по кератопластике Научно-педагогического центра головной организации ФГБУ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» Минздрава России (Москва).

    Структура и объём работы
    Диссертация изложена на 148 листах компьютерного текста и состоит из введения, обзора литературы, материалов и методов исследования, 3 глав собственных исследований, заключения, выводов и практических рекомендаций, библиографического указателя. Работа иллюстрирована 79 рисунками и 15 таблицами. Библиографический указатель содержит 174 источника, из них 46 источников на русском языке и 128 на иностранных языках.

    Материал и методы
    Клиническая часть работы проведена на базе Чебоксарского филиала ФГБУ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» Минздрава России и головной организации (Москва) ФГБУ «МНТК «Микрохирургия глаза» им. акад. С.Н. Фёдорова» Минздрава России. Она основана на анализе результатов обследования и хирургического лечения 80 глаз 77 пациентов, которым была проведена передняя послойная кератопластика по поводу кератоконуса III-IV степени, согласно классификации M. Amsler (1951 год).
    Пациенты были разделены на 3 группы, исходя из вида проведенного хирургического лечения. Методом фемтолазерной передней послойной кератопластики (Ф-ППК) было прооперировано 11 глаз. Фемтолазерная глубокая передняя послойная кератопластика (Ф-ГППК) была выполнена на 34 глазах, которые были включены в основную группу. В контрольную группу вошло 35 глаз, прооперированных по методике мануальной глубокой передней послойной кератопластики (ГППК).
    Возраст пациентов колебался от 16 до 60 лет. Средний возраст составил 30±8 лет. Полученное распределение свидетельствует о том, что исследуемая патология глаза поражает преимущественно наиболее работоспособную часть населения — людей в возрасте 20-49 лет (88%), и лишь 4 % пациентов приходится на лиц 50 лет и старше. Из 77 заболевших 50 (65%) были мужского пола, 27 (35%) — женского. Срок наблюдения составил от 1 до 2 лет.
    Наряду с основным заболеванием была выявлена сопутствующая патология органа зрения: миопия средней и высокой степени 28 (35%) глаз, периферические дистрофии сетчатки 20 (25%) глаз, деструкция стекловидного тела 36 (45%) глаз.
    Значение средней остроты зрения без коррекции до операции соответствовало 0,03±0,02, с максимальной коррекцией — 0,09±0,08.
    Плотность эндотелиальных клеток (ПЭК) до операции составила 2758±326 клеток/мм?. Выявляли характерные для кератоконуса изменения: полимегатизм (увеличение размера) составил 38,1±3,3% при норме до 30%; значение плеоморфизма (полиморфизма) было равно 45,8±8,5%, при норме 60% и более.
    Толщина роговицы в центре соответствовала 384±30 мкм. Параметры, характеризующие биомеханические свойства роговицы — корнеальный гистерезис (CH) и фактор резистентности роговицы (CRF), были снижены и составляли 6,6±1 и 5±1,2 мм рт. ст., соответственно.
    Всем пациентам до хирургического вмешательства и на сроках 1, 3, 6, 12 месяцев после проводили следующие исследования: стандартное офтальмологическое обследование (визометрия, авторефрактометрия, биомикроскопия, офтальмоскопия, тонометрия, ультразвуковая пахиметрия); исследование биомеханических свойств роговицы (ORA); оптическая когерентная томография переднего отрезка (Optovue); конфокальная сканирующая микроскопия, подсчёт ПЭК (Confoscan-4); построение пахиметричекой карты роговицы (Pentacam HR).
    Статистический анализ выполнен с использованием программы Statistica 6.0 (продукт компании "StatSoft", США). При работе использованы рекомендации научного директора StatSoft Russia В.П. Боровикова.
    Для характеристики центральной тенденции (наиболее типичных значений в выборке) использовали средние значения. Результаты статистики представлены в виде М±?, где М — среднее значение; ? — стандартное отклонение.
    Достоверность различий между независимыми данными оценивали с помощью t-критерия Стьюдента (p), а также по методу Манна-Уитни (pm-u) при количестве наблюдений в одной из групп менее 30. Оценку различий между зависимыми (динамическими) данными проводили по t-критерию Стьюдента для зависимых данных (pn) и по критерию Вилкоксона (pw) при количестве наблюдений менее 30. Для оценки различий между относительными величинами, близкими к 0 и 100: использовали точный метод Фишера (pf). Во всех случаях коэффициент достоверности р<0,05 считали статистически значимым.
    В работе использовали ФСЛ IntraLase FS. Частота повторения импульсов — 60 кГц, длительность импульса — 600-800 фемтосекунд (1 фс = 10-15с), максимальная пиковая мощность импульса — 2,5 мкДж.
    В экспериментальной части работы проводили исследование степени иррегулярности поверхности горизонтального среза, выполненного с помощью ФСЛ в глубоких слоях донорской роговицы при использовании различных настроек, с целью определения параметров лазерного воздействия, оптимальных для формирования наиболее ровной поверхности. Срезы выполняли на роговицах, законсервированных в среде «Борзенка-Мороз», на дистанции 600 мкм от передней поверхности. Контролем служили горизонтальные срезы, выполненные с помощью механического микрокератома Moria II на глубине 600-700 мкм. Полученные образцы исследовали на атомно-силовом микроскопе SMM-2000 в контактном режиме. В случае каждого из образцов анализировали не менее 10 изображений площадью 400 мкм 2 (20?20 мкм).
    С целью отработки методики и оценки состояния зоны интерфейса между трансплантатом и остаточной задней стромой реципиента было выполнено 8 экспериментальных операций Ф-ППК на 4-х кроликах породы «Шиншилла».

    РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ
    АСМ выявила, что среднеквадратичная шероховатость поверхности горизонтального среза, выполненного с помощью ФСЛ Intralase 60 kHz в глубоких слоях донорской роговицы при использовании следующих настроек: энергия — 1 мкДж, расстояние между точками/рядами — 4 мкм, соответствует 114±16 нм и статистически не отличается от таковой, полученной при выполнении среза с помощью механического микрокератома Moria II (120±19 нм).
    Гистологическое исследование роговичных дисков кроликов, проведённое на сроках 1 и 6 месяцев после Ф-ППК, подтвердило тесный контакт трансплантата с остаточной задней стромой без возможности дифференцировать зону интерфейса по морфологическим признакам. Граница между трансплантатом и собственной роговицей была практически незаметна.
    В ходе исследования разработана технология Ф-ППК заключающаяся в следующем. Из донорской роговицы, законсервированной в среде Борзенка-Мороз, выкраивали трансплантат необходимого диаметра и толщины, которую рассчитывали путём умножения минимального значения ультразвуковой пахиметрии на 0,8. Использовали следующие параметры ФСЛ: для горизонтального разреза — энергия 1 мкДж, расстояние между точками/рядами — 4 мкм, растровый паттерн; для вертикального среза — энергия 1,5 мкДж, расстояние между точками/рядами — 2 мкм, угол вреза — 90?. Далее формировали ложе в роговице реципиента используя следующие параметры ФСЛ: для горизонтального разреза — энергия 2 мкДж, расстояние между точками/рядами — 4 мкм, растровый паттерн; для вертикального среза — энергия 1,5 мкДж, расстояние между точками/рядами — 2 мкм, угол вреза — 90?. Глубину горизонтального среза рассчитывали исходя из данных ОСТ таким образом, чтобы в самом тонком участке оставалось не менее 70 мкм стромы. Роговичный диск реципиента удаляли пинцетом, трансплантат фиксировали в ложе непрерывным швом по стандартной методике.
    В ходе исследования разработана технология Ф-ГППК заключающаяся в следующем. Перед операцией проводили расчёт положения разрезов в роговице реципиента. Глубину горизонтального разреза рассчитывали как значение минимальной толщины роговицы, полученное методом ОКТ, за вычетом 70 мкм. Глубину начала заднего кольцевидного разреза рассчитывали исходя из минимальной толщины роговицы в зоне диаметра 7 мм, определённой по пахиметрической карте, полученной с помощью прибора «Pentacam».
    Выкраивали трансплантат с профилем края по типу «шляпки гриба», диаметром на 0,1 мм превышающим запланированный диаметр ложа реципиента. Использовали следующие параметры ФСЛ: для заднего среза — расстояние между точками/рядами — 2 мкм, энергия 2,0 мкДж, угол 900; для горизонтального компонента трепанационного среза — расстояние между точками/рядами — 4 мкм, энергия 1 мкДж; для переднего среза — расстояние между точками/рядами — 2 мкм, энергия 1,5 мкДж, угол 900.
    В роговице реципиента с помощью ФСЛ формировали разрезы по следующей схеме: несквозной задний разрез диаметром 7 мм, полный ламеллярный разрез диаметром 8,1 мм и передний вертикальный разрез диаметром 8 мм. Использовали следующие параметры ФСЛ: для заднего среза — расстояние между точками/рядами — 2 мкм, энергия 1,5 мкДж, угол 900; для ламеллярного среза — расстояние между точками/рядами — 8 мкм, энергия 2 мкДж; для переднего среза — расстояние между точками/рядами — 2 мкм, энергия 1,5 мкДж, угол 900. Полученный роговичный диск удаляли с помощью пинцета. Далее, начиная со дна заднего кольцевидного разреза, с помощью тупого шпателя по направлению к центру роговицы формировали интрастромальный тоннель длиной 3 мм. В тоннель вводили тупую канюлю с отверстием, обращённым в сторону ДМ, через которую подавали стерильный воздух в объёме 1,0 мл до момента формирования «большого пузыря», отделяющего ДМ от остаточной стромы. В сформированный пузырь иглой калибра 30G вводили когезивный вискоэластик (1% гиалуронат натрия). Далее, с помощью роговичных ножниц, проводили иссечение остаточной стромы таким образом, чтобы вертикальный разрез являлся продолжением несквозного заднего разреза, сформированного ФСЛ. После успешного формирования ложа в роговице реципиента ДМ трансплантата удаляли с помощью пинцета. Трансплантат фиксировали в ложе непрерывным швом по стандартной методике.
    При проведении Ф-ППК мы не столкнулись с интраоперационными осложнениями.
    При проведении глубокой послойной кератопластики в основной группе «большой пузырь» удалось сформировать в 85,7%, в контрольной — в 74,3%, соответственно, применение мануального метода в основной группе потребовалось в 14,3% случаев, в контрольной — в 25,7%. Таким образом, применение ФСЛ в глубокой передней послойной кератопластике позволило снизить количество случаев перфорации ДМ на 11,4% и количество операций, конвертированных в СКП с 9,5% до 2,9%.
    Во всех 80 случаях (100%) удалось достичь прозрачного приживления трансплантата.
    У пациентов группы Ф-ППК острота зрения без коррекции (НКОЗ) до операции варьировала от 0,01 до 0,1 (в среднем 0,04±0,03), а с максимальной очковой коррекцией (КОЗ) находилась в пределах от 0,05 до 0,2 (в среднем 0,09±0,04). В послеоперационном периоде к сроку наблюдения 1 год происходило постепенное повышение НКОЗ и КОЗ до средних значений 0,1±0,02 и 0,2±0,07, соответственно. Максимальное значение КОЗ, которого удалось достичь на сроке наблюдения 1 год, составило 0,4 у 2 пациентов.
    Среднее значение кератометрии в группе до операции соответствовало 52,26±3,71, а к сроку 1 год уменьшилось до 44,65±1,55 дптр.
    Значение сфероэквивалента рефракции (СЭ) до операции составило в среднем —9,42±5,84 дптр. К сроку наблюдения 1 год оно приближалось к 0 и соответствовало —0,48±3,74 дптр.
    Величина цилиндрического компонента рефракции составила 6,19±2,25 дптр. На сроке 1 год значение послеоперационного астигматизма соответствовало 4,83±1,21 дптр.
     Динамика изменений клинико-функциональных показателей до и в разные сроки после операции приведена в табл. 1.
    Значение минимальной ОКТ пахиметрии до операции составило 406±20 мкм, через год после — 506±26 мкм, что свидетельствовало о восстановлении физиологической толщины роговицы.
    В центральной части роговицы толщина остаточной задней стромы реципиента составила 85±15 мкм, что соответствовало технике проведённого вмешательства.
    До операции значение CH составило 6,7±1,3 мм рт. ст., CRF — 5,4±1,2 мм рт. ст. Через 1 годе после проведения Ф-ППК значения CH и CRF повысились до 10,4±1,2 и 11±1 мм рт. ст. Полученные данные свидетельствуют о статистически достоверном (pw<0,001) увеличении значений СH и CRF по сравнению с дооперационными цифрами в 1,6 и 2 раза, соответственно, и о восстановлении физиологических значений этих параметров.
    Плотность эндотелиальных клеток (ПЭК), подсчитанная с помощью КСМ составила в среднем 2835±523 клеток/мм2. На сроке 1 год после операции значение ПЭК соответствовало в среднем 2716±402 клеток/мм2. Потеря ЭК на этом сроке была равна 4,2%.
    У пациентов основной группы НКОЗ до операции варьировала от 0,01 до 0,2 (в среднем 0,03±0,02). КОЗ — от 0,01 до 0,3 (в среднем 0,11±0,07). К сроку наблюдения 1 год средние показатели НКОЗ и КОЗ были равны 0,29±0,19 и 0,66±0,15, соответственно. Максимальная КОЗ, которую удалось достичь в результате проведения Ф-ГППК составила 1,0 у 2 пациентов.
    В контрольной группе дооперационная острота зрения была сопоставимой. НКОЗ варьировала от 0,01 до 0,1 (в среднем 0,02±0,02), КОЗ — от 0,01 до 0,4 (в среднем 0,07±0,09). К сроку наблюдения 1 год показатели НКОЗ и КОЗ были равны 0,26±0,2 и 0,54±0,18, соответственно. Максимальная КОЗ, которую удалось достичь в результате проведения ГППК составила 1,0 у 2 пациентов.
    На сроке 6 месяцев после операции среднее значение НКОЗ и КОЗ в основной группе составило 0,21±0,17 и 0,54±0,15, а в группе контроля 0,12±0,13 и 0,42±0,15, соответственно. Статистический анализ данных показал, что разница в значениях некорригированной (p=0,031) и корригированной (p=0,023) остроты зрения на этом сроке наблюдения является достоверной, что свидетельствует о более быстрой зрительной реабилитации пациентов в основной группе.
    Статистический анализ послеоперационных значений НКОЗ и КОЗ на сроке наблюдения 1 год выявил отсутствие значимой разницы между этими показателями в основной и контрольной группах (p>0,05).
    В основной группе показатель кератометрии до операции составил в среднем 54,08±4,75. К сроку 1 год после операции средняя кератометрия была равна 43,93±2,75.
    Значение СЭ до операции составило в среднем —14,1±5,08 дптр. К сроку наблюдения 1 год оно соответствовало —2,39±1,86 дптр.
    Величина цилиндрического компонента рефракции до операции составляла 8,72±2,95 дптр. На сроке 1 год значение послеоперационного астигматизма соответствовало 3,7±1,38 дптр.
     Динамика изменений клинико-функциональных показателей основной группы до и в разные сроки после операции приведена в табл. 2.
    В контрольной группе показатель кератометрии составил в среднем 50,42±6,67 дптр. К сроку 1 год после операции средняя кератометрия была равна 42,31±2,59 дптр.
    Значение СЭ до операции составило в среднем —11,23±5,87 дптр. К сроку наблюдения 1 год соответствовало —1,38±2,83 дптр.
    Величина цилиндрического компонента рефракции составила 9,17±4,34 дптр. На сроке 1 год значение послеоперационного астигматизма соответствовало 4,82±1,92 дптр.
    Статистический анализ значений послеоперационного астигматизма выявил достоверно меньшее его значение в основной группе, по сравнению с контрольной (p=0,04).
    ПЭК в основной группе составила 2703±361, в контрольной — 2778±236 клеток/мм2. Через год после операции эти значения соответствовали 2501±267 и 2609±203 клеток/мм2. Потеря ЭК на сроке 1 год составила 7,4% в основной группе и 6,1% в контрольной. Статистический анализ полученных данных показал отсутствие значимой разницы между этими показателями в исследуемых группах (p>0,05).
    Динамика изменений клинико-функциональных показателей контрольной группы до и в разные сроки после операции приведена в табл. 3.
    В основной группе значение минимальной ОКТ пахиметрии до операции составило 377±31 мкм, через год после — 506±20 мкм. В контрольной — 366±27 мкм и 521±28 мкм, соответственно. Полученные данные показывают, что используемые методы позволяют восстановить физиологическую толщину роговицы в зона трансплантации.
    Также измеряли количество остаточной задней стромы на сроке 1 год после операции, которое составило в среднем 25±4 мкм в основной группе и 25±5 мкм в контрольной, что соотносится с толщиной ДМ и свидетельствует о практически полном замещении поражённой ткани донорским материалом.
    В основной группе CH составил 6,6±1 мм рт. ст., CRF — 4,8±1,1. Через 1 годе после проведения Ф-ГППК значения CH и CRF повысились до 9,9±0,7 и 9,3±0,8 мм рт. ст. Полученные данные свидетельствуют о статистически достоверном (pn<0,001) увеличении значений CH и СRF по сравнению с дооперационными цифрами в 1,5 и 1,9 и раза, соответственно, и о восстановлении физиологических значений этих параметров.

    Выводы
    1. По результатам экспериментального исследования иррегулярности поверхности горизонтального среза, выполненного в глубоких слоях донорской роговицы, методом АСМ установлено, что следующие параметры ФСЛ позволяют получить наиболее ровную поверхность, среднеквадратичная шероховатость которой не превышает 112±17 нм: энергия 1 мкДж, расстояние между импульсами/рядами 4 мкм (pm-u=0,01).
    2. Применение метода Ф-ППК для лечения пациентов с кератоконусом позволяет получить хороший анатомический результат и в 100% случаев приводит к прозрачному приживлению трансплантата на сроке наблюдения до 2 лет, при этом методика не имеет рисков интраоперационных осложнений (0%) и безопасна для эндотелия (потеря ЭК 4,2% к 1 году).
    3. Проведение фемтолазерной послойной кератопластики пациентам с кератоконусом улучшает биомеханические свойства роговицы, что проявляется в достоверном повышении CH и CRF, по сравнению с дооперационными данными, в случае Ф-ППК в 1,6 и 2 раза (pw<0,001), а в случае Ф-ГППК в 1,5 и 1,9 раза (pn<0,001).
    4. Разработанный метод Ф-ГППК, благодаря новому алгоритму нанесения разрезов, включающему формирование несквозного заднего разреза в роговице реципиента ниже плоскости ламеллярного, позволяет произвести удаление передних слоёв роговицы реципиента и выполнить отделение остаточной задней стромы от ДМ путём введения «большого пузыря» воздуха без использования острых колюще-режущих инструментов, что позволило снизить число возможных осложнений и сформировать сложный профиль трансплантата и его ложа по типу «шляпки гриба» всего за 2 старта ФСЛ.
    5. Сравнительный анализ клинико-функциональных результатов Ф-ГППК и ГППК выявил, что методики имеют сопоставимые результаты по остроте зрения на сроке наблюдения 1 год (КОЗ=0,66±0,15 и 0,54±0,18, НКОЗ=0,29±0,19 и 0,26±0,2, p>0,05) и потере эндотелиальных клеток (7,4% и 6,8%, p>0,05), при этом применение ФСЛ позволяет ускорить зрительную реабилитацию пациентов и получить достоверно более высокое значения как корригированной (0,54±0,15 против 0,42±0,14, p=0,023), так и некорригированной (0,21±0,17 против 0,12±0,13, p=0,031) остроты зрения на сроке 6 месяцев после операции.
    6. Применение технологии Ф-ГППК позволяет достоверно повысить долю качественного результата лечения (КОЗ 0,5 и выше на сроке наблюдения 1 год) с 71,4% до 97,1 %, по сравнению с методом ГППК (pf =0,013).
    7. Применение ФСЛ позволяет формировать трансплантат и ложе в роговице реципиента всегда одинаковой круглой формы, что обеспечивает хорошую адаптацию тканей и приводит к достоверному уменьшению значений послеоперационного астигматизма с 4,8±1,9 дптр при использовании метода ГППК до 3,7±1,4 дптр при использовании технологии Ф-ГППК (p=0,04).

    Практические рекомендации
    1. Метод Ф-ППК, по причине низкой послеоперационной остроты зрения (ср. КОЗ=0,2 к 1 году), не может быть рекомендован к широкому клиническому применению при лечении пациентов с кератоконусом.
    2. При проведении Ф-ГППК с помощью Intralase FS 60 kHz рекомендуется использовать следующие параметры для роговицы донора: задний разрез — расстояние между точками/рядами — 2 мкм, энергия — 2 мкДж; горизонтальный компонент трепанационного среза — расстояние между точками/рядами — 4 мкм, энергия — 1 мкДж; передний разрез — расстояние между точками/рядами — 2 мкм, энергия — 1,5 мкДж; для роговицы реципиента: несквозной задний разрез — расстояние между импульсами/рядами 2 мкм, энергия 1,5 мкДж; ламеллярный разрез — расстояние между точками/рядами 8 мкм, энергия 2,0 мкДж, растровый паттерн; передний разрез — расстояние между точками/рядами 2 мкм, энергия 1,5 мкДж.
    3. Для расчёта положения горизонтального разреза целесообразно определить минимальную толщину роговицы реципиента в зоне эктазии методом ОКТ в режиме пахиметрии и из полученного значения вычесть 70 мкм. Для расчёта положения несквозного заднего разреза в роговице реципиента целесообразно применять прибор «Pentacam», который позволяет провести пахиметрию в зоне диаметра 9 мм. С помощью полученной карты возможно определить минимальное значение толщины роговицы в зоне диаметра 7 мм. На пахиметрической карте для этого следует построить перпендикуляры к осям координат в искомой зоне диаметра и по цветовой кодировке выявить наиболее тонкий участок, с которым пересекается перпендикуляр. Из найденного значения следует вычесть 100 мкм и получить в результате глубину начала несквозного заднего разреза.
    4. Трансплантат рекомендуется выкраивать перед операцией, а отделять ДМ от него лишь после успешного формирования ложа в роговице реципиента, т.к. это позволяет сэкономить время и не рисковать трансплантатом до полной уверенности в успехе послойной методики.
    5. При возникновении микроперфорации ДМ хирургу не следует сразу переходить на СКП, нужно приложить все усилия для выполнения операции по послойной методике с использованием механических расслаивателей и диссекторов. После удаления стромы роговицы, при завершении операции в переднюю камеру глаза следует ввести воздух, что в большинстве случаев позволяет добиться прилегания ДМ к трансплантату.

    Список работ, опубликованных по теме диссертации:
    1. Паштаев А.Н., Паштаев Н.П. Фемтолазерная глубокая передняя послойная пересадка роговицы // Сборник научных работ V всероссийской научной конференции «Актуальные проблемы офтальмологии», Москва, 2010, с. 148-149.
    2. Паштаев А.Н., Борзенок С.А., Шипунова А.В. Результаты экспериментальных исследований воздействия фемтосекундного лазера на трупные донорские роговицы, подвергнутые процедуре кросс-линкинга // Сборник тезисов IX Всероссийской научно-практической конференции «Фёдоровские чтения», Москва, 2011, с. 269-270.
    3. Малюгин Б.Э., Паштаев А.Н., Елаков Ю.Н., Кустова К.И., Айба Э.Э. Глубокая передняя послойная кератопластика с использованием фемтосекундного лазера Intralase 60 kHz: первый опыт // Практическая медицина №4(59), 2012, с. 100-103.
    4. Малюгин Б.Э., Мороз З.И., Дроздов И.В., Айба Э.Э. Паштаев А.Н. Эндотелиальная кератопластика (обзор литературы) // Офтальмохирургия №1, 2013, с. 66-72.
    5. Паштаев Н.П., Малюгин Б.Э., Паштаев А.Н., Кустова К.И., Дроздов И.В., Айба Э.Э. Глубокая передняя послойная рекератопластика после передней послойной кератопластики c применением фемтосекундного лазера. Клинический случай // Офтальмохирургия №3, 2013, с. 17-21.
    6. Малюгин Б.Э., Борзенок С.А., Дроздов И.В., Айба Э.Э., Паштаев А.Н. Первый опыт и клинические результаты задней автоматизированной послойной кератопластики (ЗАПК) с использованием предварительно выкроенных консервированных ультратонких роговичных трансплантатов // Офтальмохирургия №3, 2013, с. 26-30.
    Патенты по теме диссертации
    1. Паштаев А.Н., Кустова К.И. Патент РФ на изобретение №2468772 «Способ заготовки донорских роговичных трансплантатов с помощью фемтосекеундного лазера для послойной кератопластики», приоритет от 27 сентября 2011.
    2. Паштаев А.Н., Кустова К.И. Патент РФ на изобретение №2477989 «Способ лечения кератоконуса, поверхностных и глубоких помутнений роговицы методом глубокой передней послойной кератопластики, выполняемой с помощью фемтосекундного лазера», приоритет от 16 февраля 2012.


Страница источника: 0

Федоровские чтения - 2017 Сателлитные симпозиумы в рамках XIV Всероссийской научно-практической конференцииФедоровские чтения - 2017 Сателлитные симпозиумы в рамках XI...

Восток – Запад 2017 Международная научно-практическая конференция по офтальмологииВосток – Запад 2017 Международная научно-практическая конфер...

Белые ночи - 2017 Сателлитные симпозиумы в рамках Международного офтальмологического конгресса Белые ночи - 2017 Сателлитные симпозиумы в рамках Международ...

Новые технологии в контактной коррекции.  В рамках  Всероссийской научно-практической конференции «Новые технологии в офтальмологии - 2017»Новые технологии в контактной коррекции. В рамках Всеросси...

Новые технологии в офтальмологии -  2017 Всероссийская научно-практическая конференция Новые технологии в офтальмологии - 2017 Всероссийская научн...

XVI Всероссийская школа офтальмологаXVI Всероссийская школа офтальмолога

Сателлитные симпозиумы в рамках конференции «Современные технологии лечения витреоретинальной патологии - 2017»Сателлитные симпозиумы в рамках конференции «Современные тех...

Современные технологии лечения витреоретинальной патологии - 2017 ХV Научно-практическая конференция с международным участиемСовременные технологии лечения витреоретинальной патологии -...

«Живая хирургия» в рамках конференции «Современные технологии лечения витреоретинальной патологии - 2017»«Живая хирургия» в рамках конференции «Современные технологи...

Роговица I. Ультрафиолетовый кросслинкинг роговицы в лечении кератоэктазий Научно-практическая конференция с международным участиемРоговица I. Ультрафиолетовый кросслинкинг роговицы в лечении...

Сателлитные симпозиумы в рамках ХIV ежегодного конгресса Российского глаукомного обществаСателлитные симпозиумы в рамках ХIV ежегодного конгресса Рос...

Сателлитные симпозиумы в рамках конференции Современные технологии катарактальной и рефракционной хирургии - 2016Сателлитные симпозиумы в рамках конференции Современные техн...

«Живая» хирургия в рамках конференции Современные технологии катарактальной и рефракционной хирургии - 2016«Живая» хирургия в рамках конференции Современные технологии...

Современные технологии катарактальной и рефракционной хирургии - 2016Современные технологии катарактальной и рефракционной хирург...

Сателлитные симпозиумы в рамках IX Российского общенационального офтальмологического форумаСателлитные симпозиумы в рамках IX Российского общенациональ...

На стыке науки и практикиНа стыке науки и практики

Федоровские чтения - 2016 XIII Всероссийская научно-практическая конференция с международным участиемФедоровские чтения - 2016 XIII Всероссийская научно-практиче...

Актуальные проблемы офтальмологии XI Всероссийская научная конференция молодых ученыхАктуальные проблемы офтальмологии XI Всероссийская научная к...

Восток – Запад 2016 Научно-практическая конференция по офтальмохирургии с международным участием Восток – Запад 2016 Научно-практическая конференция по офтал...

Белые ночи - 2016 Сателлитные симпозиумы в рамках Международного офтальмологического конгресса Белые ночи - 2016 Сателлитные симпозиумы в рамках Международ...

Невские горизонты - 2016 Научная конференция офтальмологовНевские горизонты - 2016 Научная конференция офтальмологов

Сателлитные симпозиумы в рамках научной конференции офтальмологов «Невские горизонты - 2016»Сателлитные симпозиумы в рамках научной конференции офтальмо...

Новые технологии в офтальмологии 2016 Всероссийская научно-практическая конференция Новые технологии в офтальмологии 2016 Всероссийская научно-п...

Витреоретинальная хирургия. Макулярный разрывВитреоретинальная хирургия. Макулярный разрыв

Современные технологии лечения витреоретинальной патологии - 2016 ХIV Научно-практическая конференция с международным участиемСовременные технологии лечения витреоретинальной патологии -...

Совет экспертов, посвященный обсуждению первого опыта использования новой офтальмологической системы CENTURION®Совет экспертов, посвященный обсуждению первого опыта исполь...

HRT/Spectralis* Клуб Россия 2015 – технология, ставшая незаменимой!HRT/Spectralis* Клуб Россия 2015 – технология, ставшая незам...

Три письма пациента. Доказанная эффективность леченияТри письма пациента. Доказанная эффективность лечения

Синдром «сухого» глаза: новые перспективыСиндром «сухого» глаза: новые перспективы

Многоликий синдром «сухого» глаза: как эффективно им управлять?Многоликий синдром «сухого» глаза: как эффективно им управлять?

Прошлое... Настоящее! Будущее?Прошлое... Настоящее! Будущее?

Проблемные вопросы глаукомы IV Международный симпозиумПроблемные вопросы глаукомы IV Международный симпозиум

Секундо В. Двухлетний личный опыт с линзами AT Lisa Tri и AT Lisa Tri ToricСекундо В. Двухлетний личный опыт с линзами AT Lisa Tri и AT...

Инновации компании «Алкон» в катарактальной и рефракционной хирургииИнновации компании «Алкон» в катарактальной и рефракционной ...

Применение устройств HOYA iSert Toric. Применение торических ИОЛ HOYA iSert Toric в рефракционной хирургии катарактыПрименение устройств HOYA iSert Toric. Применение торических...

Рейтинг@Mail.ru