Реферат RUS  Реферат ENG  Литература  Полный текст
УДК:617.711-002.152

Толл-рецепторы – распознающие рецепторы врожденной иммунной системы и г лаз (литературный обзор)


1Московский государственный медико-стоматологический университет им. А.И. Евдокимова
2МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова Росмедтехнологии» Минздрава РФ
3Дагестанская Государственная Медицинская Академия

    Несмотря на широкий спектр терапевтических и хирургических методов лечения, используемых в офтальмологии, их эффективность остается низкой при неадекватно протекающих острых воспалительных инфекциях глаза с выраженным аллергическим компонентом, таких как кератиты, конъюнктивиты; а также воспалительных процессах с аутоиммунным компонентом — рецидивирующие увеиты, кератиты, атипичный оптический неврит при сифилисе, коллагенозах. В патогенезе этих заболеваний играет роль иммунная реактивность организма, которая включает звенья врожденного и приобретенного (адаптивного) иммунитета.
     Врожденная иммунная система образует первую линию защиты на пути патогенных агентов, проникающих в организм человека. Врождённый иммунитет реализуется через клеточные и гуморальные факторы. Факторы врожденного иммунного ответа предсуществуют или индуцируются быстро (минуты, часы) после инфекции. Компоненты врожденного иммунного ответа не изменяются в процессе жизни организма, контролируются генами зародышевой линии и передаются по наследству. К факторам неспецифической иммунной защиты относятся гуморальные (интерфероны, интерлейкины, хемокины, система комплемента, естественные антитела IgM и IgG) и клеточные факторы (толл-рецепторы, рецепторы цитокинов, естественные киллеры — NK-клетки, моноциты и макрофаги, дендритные клетки) [3].
    Для выявления патогенной инвазии врожденная иммунная система высших позвоночных животных использует два способа — распознавание чужеродных для организма молекулярных структур инфекционного происхождения — патоген-ассоциированные молекулярные паттерны (ПАМП), это компоненты клеточной стенки бактерий и грибов (ЛПС-липополисахариды, липопептиды, липопротеины, пептидогликан, β-глюкагон), либо микробные нуклеиновые кислоты или белки (флагеллин, профилин); второй способ — распознавание эндогенных факторов, возникающих в ответ на инфекцию (распознавание «измененного своего»). К эндогенным активаторам врожденного иммунитета относят белки теплового шока и мочевую кислоту, а также продукты некроза и апоптоза [12]. В 1994 г. П. Матцингер была выдвинута «теория опасности» и появился термин «дистресс-ассоциированные молекулярные паттерны» (ДАМП) — эндогенные молекулы, которые при инфекции или ином клеточном дистрессе (например, нарушение ионного баланса клетки, некротическая гибель собственных клеток) либо синтезируются вновь, либо появляются в необычных формах. В распознавании ПАМП и ДАМП участвуют паттерн-распознающие рецепторы (ПРР), в частности толл-рецепторы, которые распознают разнообразные классы микроорганизмов и обеспечивают индивидуализированную реакцию врожденной иммунной системы на разные типы инфекций. Рецепторы врожденной иммунной системы по сравнению с приобретенной более консервативны, не подвергаются соматической перестройке, их разнообразие ограничено и является результатом филогенеза, они с меньшей аффинностью (специфичностью) взаимодействуют с ПАМП и ДАМП. Однако ответ врожденной иммунной системы развивается быстрее и может приводить к быстрой элиминации патогенов без участия приобретенного иммунитета. Кроме того, ПРР реализуют свое влияние на приобретенный иммунитет с помощью дендритных клеток, основной функцией которых является индукция и регуляция Т-клеточного ответа.
    Реализация специфичности врожденной иммунной системы ложится, в большей степени, на семейство эволюционно консервативных рецепторов, известных как Toll-подобные рецепторы (TLR), которые играют решающую роль в ранней защите организма от патогенов. TLR являются сигнальными патоген-распознающими рецепторами и рассматриваются исследователями как ключевые рецепторы врожденного иммунитета [15]. TLR участвуют в распознавании микробных компонентов и инициируют активацию внутриклеточных сигнальных путей, в результате чего происходит экспрессия генов цитокинов (ФНОα, ИЛ-1, ИЛ-6, ИЛ-12, ИФНα/β и других), костимуляторных молекул и некоторых других генов.
    Общим свойством всех толл-рецепторов является их способность взаимодействовать со структурами бактерий, грибов, вирусов и проведение в ядро активационного сигнала, ведущего к повышению защитных неспецифических механизмов организма, в частности воспалительной реакции, что ведет в конечном итоге к гибели и элиминации патогена. Толл-рецепторы экспрессированы в иммуннокомпетентных тканях (миндалины, лимфоузлы, селезенка, тимус) и в покровных тканях (кожа, бронхо-легочный, гастроинтестинальный и урогенитальный эпителий, эпителий роговицы и конъюнктивы). На клеточном уровне толл-рецепторы широко экспрессированы на структурных клетках (эпителиальные, фибробласты, эндотелиальные) и на иммунных клетках — моноцитах, макрофагах, нейтрофилах, антигенпрезентующих дендритных клетках (ДК), естественных киллерах (NK-гранулярные лимфоциты периферической крови и лимфоидных органов) и в меньшей степени на эозинофилах, лимфоцитах [16, 17]. Между толл-рецепторами и системой интерферонов имеется взаимосвязь — пять типов TLR1, 5, 6, 9, 16 участвуют в индукции биосинтеза трёх основных классов интерферонов [7].
    Tолл-рецепторы — семейство молекул, состоящее из 10 трансмембранных одноцепочечных белков-рецепторов со сходным строением и молекулярной массой 90-115 кДа. [4]. Они имеют внеклеточную, трансмембранную и внутриклеточную части. Внеклеточная часть TLR, богатая лейцином (LRR — leucin-rich repeat domain), связывается с лигандами (компонентами клетки) микроорганизмов. Внутриклеточная часть TLR (TIR-Toll interleukin-1 receptor), гомологичная внутриклеточному домену интерлейкин-1, отвечает за взаимодействие с адаптерными молекулами внутриклеточных сигнальных путей, что приводит к индукции синтеза провоспалительных генов и экспрессии интерферонов 1 типа, а также апоптоза. Передачу сигналов внутри клетки, несущей TLR, представляют как последовательную активацию цитоплазматических адапторных молекул (MyD88 и др.), киназ (МАРК) и ядерного фактора транскрипции (NF-kB) [1, 6]. Аббревиатура MyD88 используется для обозначения миелоидного дифференцированного фактора 88. Этот фактор до последнего времени рассматривался как универсальная адапторная молекула. Недавно были описаны еще три вида адаптерных молекул — MAL/TIRAP, TICAM-1 (TRIF) и TICAM (TRAM) (рис.).
    Проведение активационного сигнала, индуцированного толл-рецепторами, происходит с участием нескольких вспомогательных молекул — CD11/CD18, CD14, MD2 [4]. Трансмембранный участок TLR обеспечивает внутриклеточную сортировку молекул TLR — в эндоплазматический ретикулум — TLR7, 8, 9 и на поверхность клетки — 2, 4, 6, 5, 10 [5].
    Неконтролируемая активация ПРР, в том числе толл-рецепторов, потенциально опасна для организма, поскольку может вести к гиперэргическому воспалению. Чувствительность ПРР должна поддерживаться на таком уровне, который обеспечивал бы достаточно надежное распознавание микробов, но, по возможности, минимизировал повреждение тканей. Поэтому негативная регуляция паттерн-распознающих рецепторов может, с одной стороны, ингибировать функцию ПРР и препятствовать адекватной реакции врожденной иммунной системы, а с другой стороны, играть заметную роль в лечении патологий, обусловленных гиперактивацией этих рецепторов.
    Изучение TLR выявило связь между врожденным и приобретенным иммунитетом. Взаимосвязь врожденного и приобретенного иммунитета осуществляется посредством дендритных клеток (ДК), специализированных фагоцитов, сконцентрированных в селезенке, лимфоузлах и коже. ДК, являясь антиген-презентующими клетками, ответственны за стимуляцию иммуннокомпетентных клеток. Они экспрессируют высокий уровень ко-стимуляторных молекул, необходимых для активации Т-лимфоцитов, что является началом специфического иммунитета.
    
    Экспрессия толл-рецепторов тканями глазного яблока
    Иммунногистохимические исследования показали, что TLR1, 2, 3, 4, 5 распределяются по всему эпителию конъюнктивы, лимба и роговицы [10, 19]. TLR5 интенсивнее флюоресцируют в поверхностных слоях эпителия лимба по сравнению с базальными. В конъюнктивальном эпителии TLR1 и 5 интенсивнее прокрашивают базальные слои. TLR2, 3, 5 также наблюдали в стромальных фибробластах конъюнктивы, лимба и роговицы. Здоровый конъюнктивальный эпителий, являясь первой линией защиты, экспрессирует высокие уровни TLR9 и средние значения TLR2 и TLR4 [16]. Jing Li с соавт. в своих иммунногистохимических исследованиях выявили слабую флюоресценцию на TLR9 конъюнктивы, лимба и роговицы в норме [10]. Эти уровни экспрессии изменяются у пациентов с весенним кератоконъюнктивитом, аллергическим конъюнктивитом у детей, при которых активируется выработка цитокинов и медиаторов воспаления, происходит инфильтрация тучными клетками, эозинофилами, лимфоцитами конъюнктивального эпителия и стромы. Длительное наблюдение за течением весеннего конъюнктивита выявило достоверное повышение уровня экспрессии TLR4, снижение TLR9 и незначительное снижение уровня экспрессии TLR2 по сравнению со здоровой конъюнктивой. Авторами установлено, что при весеннем конъюнктивите экспрессия в строму TLR4, главным образом, происходит из фибробластов, инфильтрированных эозинофилами и тучными клетками [16].
    Отмеченное снижение уровня экспрессии TLR9 при весеннем конъюнктивите по сравнению со здоровой тканью на молекулярном уровне было подтверждено исчезновением специфического прокрашивания эпителия конъюнктивы на TLR9 в биоптатах [16]. Однако до сих пор имеется большой пробел в понимании механизмов, лежащих в основе снижения экспрессии TLR9 в эпителии конъюнктивы при весеннем конъюнктивите.
    Роговичный и конъюнктивальный эпителий являются барьером, защищающим глаз от патогенных агентов. Роговица человека экспрессирует различные виды толл-рецепторов — TLR3, TLR4, TLR5 [10]. Исследования на крысах показали, что при кератитах эпителиальные клетки экспрессируют высокие уровни TLR4, TLR2,TLR9 [16].
    В некоторых исследованиях показано, что при простом вирусе герпеса типа 1 экспрессируются в эпителий роговицы TLR7 [13]. Роговичный эпителий обладает уникальной способностью модулировать функциональную активность экспрессированных TLR2, 4 и, следовательно, контролировать нежелательное воспаление. Фактически интактный роговичный эпителий не экспрессирует TLR2, 4 на клеточную поверхность и не связывается с лигандами микроорганизмов (TLR-немые формы) [10, 11, 16]. Интересен факт, что роговичный эпителий не реагирует на сапрофитную флору и редко вовлекается в воспалительный процесс при бактериальном конъюнктивите.
    При патологических состояниях роговичный эпителий экспрессирует TLR4, которые взаимодействуют с TLR4-агонистами (липополисахаридами бактерий) и стимулируют выработку провоспалительных цито- и хемокинов [16, 18]. TLR-агонисты могут приводить к развитию кератита в результате специфической нейтрофильной реакции и разбалансированного местного воспаления. Язва роговицы, вызванная бактериальной инфекцией, приводящая в большинстве случаев к зрительным расстройствам, является следствием деструкции коллагеновых волокон роговицы под действием коллагенолитических ферментов. Инфильтрирующие язву лейкоциты (макрофаги и нейтрофилы) способствуют разрушению коллагена при взаимодействии с актированными кератоцитами. В недавних исследованиях показана роль фибробластов роговицы, активированных липополисахаридными комплексами бактерий путём экспрессии комплекса TLR4/CD14/MD-2 (так называемые активированные кератоциты) в развитии язвы роговицы. Активированные кератоциты активно продуцируют хемокины, интерлейкин-8, моноцитарный хемоаттрактивный белок 1 и молекулы межклеточной адгезии 1. Такие исследования показывают, что распознавание кератоцитами липолисахаридных комплексов бактерий и их последующая активация ведут к формированию язвы роговицы. Таким образом, активация роговичных TLR4 может иметь благоприятный и неблагоприятный эффекты, зависящие от силы, длительности воздействия патогена и эффективности его удаления [10, 16].
    Однако вопрос по поводу механизма экспрессии TLR2 и 4 в эпителий роговицы при взаимодействии с липопротеидным комплексом бактерий остается спорным [10].
    В популяции антиген-презентирующих клеток хориоидеи, цилиарного тела, радужки и склеры человека выявлены высокие уровни экспрессии TLR4, которые связаны с липополисахаридным рецепторным комплексом бактерий [11, 16]. В сосудистой оболочке человека в норме комплекс TLR4/CD14/MD-2 антигенпрезентирующих клеток относительно богато представлен в корне радужной оболочки и строме цилиарного тела, тогда как в хориоидеи и строме радужки обнаруживается редко [11]. Комплекс TLR4/CD14/MD-2 в увеальной ткани локализуется периваскулярно или субэпителиально. В противоположность другим тканям, например коже, в сосудистой оболочке этот комплекс не экспрессируется в эпителии и сосудистом эндотелии увеального тракта глаза [11]. Такая локализация толл-рецепторов в увеальной ткани является наиболее оптимальной для связывания с липополисахаридным комплексом грамнегативных бактерий гематоофтальмическим или интракоокулярным барьерами [11]. Локализация липополисахаридного рецепторного комплекса внутри сосудистой оболочки предполагает ответную реакцию только при проникновении микроорганизмов через гематоофтальмический и гистогематический барьеры. В норме комплекс TLR4/CD14/MD-2 не определяется на глазной поверхности, что можно объяснить иммунологически-привилегированным статусом глаза, в особенности роговицы.
    Ретинальный пигментный эпителий экспрессирует высокие уровни TLR2, 3, 4, костимуляторные молекулы, а также TLR1, 7, 9, 10 [16]. Ретинальный пигментный эпителий принимает активное участие в иммунных реакциях сетчатки, являясь источником хемо-, цитокинов и ростовых факторов, которые противодействуют патологическим агентам (например, цитомегаловирус, коронаровирус, токсоплазма гондии). Исследования показали, что выработка TLR2, 3, 4 клетками ретинального пигментного эпителия повышается под действием агонистов — TLR3 и интерферона (IFN)-γ (молекул, взаимодействующих с паттернраспознающими рецепторами). В частности, агонисты TLR3 стимулируют выработку IFN-γ (активного ингибитора вирусной инфекции), IL-6, IL-8, моноцитарного хемоаттрактивного протеина 1 и молекул межклеточной адгезии [16].
    Изучение структуры, сигнальных путей, экспрессии и распределения толл-рецепторов направлены не только на понимание молекулярных и иммунологических основ инфекционных и аутоиммунных процессов, но и разработку альтернативных терапевтических методов, модулирующих аллергические и иммунные реакции при этих процессах [2, 14].
    Для создания быстрой и неспецифической защиты против патогенов возможно использование набора бактериальных антигенов, несущих панель патоген-ассоциированных молекулярных структур, которые являются лигандами для достаточно хорошо охарактеризованных девяти Toll-подобных рецепторов: TLR1 — TLR9. Весьма вероятно, что такая комбинация антигенов будет создавать быструю защиту не только против бактерий, но и против вирусов, поскольку некоторые бактериальные лиганды (ЛПС, CpG-мотив бактериальной ДНК) распознаются TLR2, TLR4 и TLR9, которые взаимодействуют с гликопротеинами вирусных оболочек и CpG-молекулами [2, 14].
    Ряд авторов опубликовал результаты экспериментов, в которых исследовали резистентность к патогенам после введения синтетических лиганд для конкретных TLR [8]. В обобщенном виде эти результаты представлены в табл.
    
    В НИИ вакцин и сывороток им. И.И. Мечникова РАМН разработана поликомпонентная бактериальная вакцина «Иммуновак ВП-4» (в дальнейшем — ВП-4; вакцина разрешена для применения в практике. Приказ МЗ РФ № 270 от 17.11.1993 г.). Вакцина состоит из антигенных комплексов S.aureus, E.coli, K.pneumoniae и Proteus vulgaris. Она создает эффективную протективную защиту против перечисленных патогенов и, являясь сильным иммуномодулятором, корригирует вторичные иммунодефициты [2].
    Данные литературы свидетельствуют о том, что ВП-4 несет большой набор ПАМП, которые теоретически могут взаимодействовать как с гомодимерами, так и гетеродимерами распознающих Toll-подобных рецепторов.
    В зарубежной литературе было уделено большое внимание возможности использования последовательности иммуностимуляторных олигодеоксинуклеотидов (ISS-ODN) — синтетических аналогов ДНК — в лечении аллергических заболеваний, в том числе и глаза. Экспериментально показано, что агонисты TLR9 (цитозин-фосфат-гуанозин или цитозин-фосфат-гуанозин динуклеотид, или синтетический аналог ДНК) проявляют иммунную стимуляторную активность, способствуя развитию антигенспецифического ответа Т-хелперов типа 1. В зарубежной литературе имеются сообщения, что при системном и местном использовании ISS-ODN у мышей достоверно подавлялась острая аллергическая реакция конъюнктивы и полностью подавлялась активность нейтрофилов и эозинофилов в поздней фазе реакции. Предполагается, что ISS-ODN могут быть эффективными терапевтическими средствами против аллергических заболеваний глаза [14, 16].


Страница источника: 77

Федоровские чтения - 2017 Сателлитные симпозиумы в рамках XIV Всероссийской научно-практической конференцииФедоровские чтения - 2017 Сателлитные симпозиумы в рамках XI...

Восток – Запад 2017 Международная научно-практическая конференция по офтальмологииВосток – Запад 2017 Международная научно-практическая конфер...

Белые ночи - 2017 Сателлитные симпозиумы в рамках Международного офтальмологического конгресса Белые ночи - 2017 Сателлитные симпозиумы в рамках Международ...

Новые технологии в контактной коррекции.  В рамках  Всероссийской научно-практической конференции «Новые технологии в офтальмологии - 2017»Новые технологии в контактной коррекции. В рамках Всеросси...

Новые технологии в офтальмологии -  2017 Всероссийская научно-практическая конференция Новые технологии в офтальмологии - 2017 Всероссийская научн...

XVI Всероссийская школа офтальмологаXVI Всероссийская школа офтальмолога

Сателлитные симпозиумы в рамках конференции «Современные технологии лечения витреоретинальной патологии - 2017»Сателлитные симпозиумы в рамках конференции «Современные тех...

Современные технологии лечения витреоретинальной патологии - 2017 ХV Научно-практическая конференция с международным участиемСовременные технологии лечения витреоретинальной патологии -...

«Живая хирургия» в рамках конференции «Современные технологии лечения витреоретинальной патологии - 2017»«Живая хирургия» в рамках конференции «Современные технологи...

Роговица I. Ультрафиолетовый кросслинкинг роговицы в лечении кератоэктазий Научно-практическая конференция с международным участиемРоговица I. Ультрафиолетовый кросслинкинг роговицы в лечении...

Сателлитные симпозиумы в рамках ХIV ежегодного конгресса Российского глаукомного обществаСателлитные симпозиумы в рамках ХIV ежегодного конгресса Рос...

Сателлитные симпозиумы в рамках конференции Современные технологии катарактальной и рефракционной хирургии - 2016Сателлитные симпозиумы в рамках конференции Современные техн...

«Живая» хирургия в рамках конференции Современные технологии катарактальной и рефракционной хирургии - 2016«Живая» хирургия в рамках конференции Современные технологии...

Современные технологии катарактальной и рефракционной хирургии - 2016Современные технологии катарактальной и рефракционной хирург...

Сателлитные симпозиумы в рамках IX Российского общенационального офтальмологического форумаСателлитные симпозиумы в рамках IX Российского общенациональ...

На стыке науки и практикиНа стыке науки и практики

Федоровские чтения - 2016 XIII Всероссийская научно-практическая конференция с международным участиемФедоровские чтения - 2016 XIII Всероссийская научно-практиче...

Актуальные проблемы офтальмологии XI Всероссийская научная конференция молодых ученыхАктуальные проблемы офтальмологии XI Всероссийская научная к...

Восток – Запад 2016 Научно-практическая конференция по офтальмохирургии с международным участием Восток – Запад 2016 Научно-практическая конференция по офтал...

Белые ночи - 2016 Сателлитные симпозиумы в рамках Международного офтальмологического конгресса Белые ночи - 2016 Сателлитные симпозиумы в рамках Международ...

Невские горизонты - 2016 Научная конференция офтальмологовНевские горизонты - 2016 Научная конференция офтальмологов

Сателлитные симпозиумы в рамках научной конференции офтальмологов «Невские горизонты - 2016»Сателлитные симпозиумы в рамках научной конференции офтальмо...

Новые технологии в офтальмологии 2016 Всероссийская научно-практическая конференция Новые технологии в офтальмологии 2016 Всероссийская научно-п...

Витреоретинальная хирургия. Макулярный разрывВитреоретинальная хирургия. Макулярный разрыв

Современные технологии лечения витреоретинальной патологии - 2016 ХIV Научно-практическая конференция с международным участиемСовременные технологии лечения витреоретинальной патологии -...

Совет экспертов, посвященный обсуждению первого опыта использования новой офтальмологической системы CENTURION®Совет экспертов, посвященный обсуждению первого опыта исполь...

HRT/Spectralis* Клуб Россия 2015 – технология, ставшая незаменимой!HRT/Spectralis* Клуб Россия 2015 – технология, ставшая незам...

Три письма пациента. Доказанная эффективность леченияТри письма пациента. Доказанная эффективность лечения

Синдром «сухого» глаза: новые перспективыСиндром «сухого» глаза: новые перспективы

Многоликий синдром «сухого» глаза: как эффективно им управлять?Многоликий синдром «сухого» глаза: как эффективно им управлять?

Прошлое... Настоящее! Будущее?Прошлое... Настоящее! Будущее?

Проблемные вопросы глаукомы IV Международный симпозиумПроблемные вопросы глаукомы IV Международный симпозиум

Секундо В. Двухлетний личный опыт с линзами AT Lisa Tri и AT Lisa Tri ToricСекундо В. Двухлетний личный опыт с линзами AT Lisa Tri и AT...

Инновации компании «Алкон» в катарактальной и рефракционной хирургииИнновации компании «Алкон» в катарактальной и рефракционной ...

Применение устройств HOYA iSert Toric. Применение торических ИОЛ HOYA iSert Toric в рефракционной хирургии катарактыПрименение устройств HOYA iSert Toric. Применение торических...

Рейтинг@Mail.ru